MUNNAR LANDSCAPE PROJECT

KERALA

FIRST YEAR PROGRESS REPORT (DECEMBER 6, 2018 TO DECEMBER 6, 2019)

SUBMITTED TO

UNITED NATIONS DEVELOPMENT PROGRAMME INDIA

Principal Investigator Dr. S. C. Joshi IFS (Retd.)

KERALA STATE BIODIVERSITY BOARD KOWDIAR P.O., THIRUVANANTHAPURAM - 695 003

CONTENTS

1. Acronyms	3
2. Executive Summary	5
3.Technical details	7
4. Introduction	8
5. PROJECT 1:	12

Documentation and compilation of existing information on various taxa (Flora and Fauna), and identification of critical gaps in knowledge in the GEF-Munnar landscape project area

5.1. Aim	12
5.2. Objectives	12
5.3. Methodology	13
5.4. Detailed Progress Report	14
a.Documentation of floristic diversity	
b.Documentation of faunistic diversity	
c.Commercially traded bio-resources	
5.5. Conclusion	23
List of Tables	25
Table 1. Algal diversity in the HRML study area, Kerala	
Table 2. Lichen diversity in the HRML study area, Kerala	
Table 3. Bryophytes from the HRML study area, Kerala	
Table 4. Check list of medicinal plants in the HRML study area, Kerala	
Table 5. List of wild edible fruits in the HRML study area, Kerala	
Table 6. List of selected tradable bio-resources HRML study area, Kerala	
Table 7. Summary of progress report of the work status	
References	84
6. PROJECT 2:	85
6.1. Aim	85
6.2. Objectives	85
6.3. Methodology	86
6.4. Detailed Progress Report	87

129

131

 6.4.1. Review of historical and cultural process and agents that induced change on the landscape
 6.4.2. Documentation of Developmental history in Production sector

 6.5. Conclusion
 128

 List of tables
 128

 Table 1. Demographic details
 128

Table 2. Tribal population data state and district level

Table 3. Number of Commercial Building

Table 4. Eco tourism data

Table 5. Details of quarries in Idukkidistrict

Table 6. Quarries in Mannankandam village

Table 7. Number of Families / Persons Displaced by Water Resource Projects

References

Annexure

Annexure 1. Expert Consultant Meeting - Minutes

Annexure 2 List of participants of the first Technical Agencies meeting for the GoI-UNDP- GEF India HRML Project

Annexure 3. Minutes of first technical agencies meeting

Annexure 4. Minutes of consultative experts meeting

Annexure 5. Questionnaire format for tradable bio-resources

Annexure 6. Questionnaire for BMC members

Annexure 7. Major identified gaps in PBR

Annexure 8 Questionnare

Annexure 9 Minutes of two day consultative workshop

1. ACRONYMS

%	٩	Percentage
ABS	٩	Access and Benefit Sharing
AYUSH	٩	Ayurveda, Yoga & Naturopathy, Unani, Siddha and Homoeopathy
BC	٩	Before Christ
BHS	٩	Biodiversity Heritage Sites
BMC	٩	Biodiversity Management Committees
CR	٩	Critically endangered
GIS	٩	Geographic Information System
HRML	٩	High Range Mountain Landscape
HVBAs	٩	High-Value Biodiversity Areas
IUCN	٩	The International Union for Conservation of Nature
IYM	٩	International Year of Mountains
JNTBGRI	٩	Jawaharlal Nehru Tropical Botanic Garden and Research Institute
KFD	٩	Kerala Forest Department
KFRI	٩	Kerala Forest Research Institute
KSCSTE	٩	Kerala State Council for Science, Technology and Environment
MoEF	٩	Ministry of Environment, Forest and Climate Change
MODIS	٩	Moderate Resolution Imaging Spectroradiometer
NP	٩	National Park
NTFPs	٩	Non-timber forest products
NWFPs	٩	Non-wood forest products
PBR	٩	Peoples' Biodiversity Register
PRA	٩	Participatory Rural Appraisal
RET	٩	Rare, Endangered and Threatened species
RRA	٩	Rural Rapid Appraisal
Spp.	٩	Species
SRTM DEM	٩	Shuttle Radar Topography Mission Digital Elevation Model
ТК	٩	Traditional knowledge
UNDP	٩	United Nations Development Programme
UNGA	Ŀ	United Nations General Assembly

VSS	٩	VanaSamrakshanaSamithi
WLS	٩	Wildlife Sanctuary
WWF	٨	World Wide Fund for Nature

2. EXECUTIVE SUMMARY

The UNDP funded 'High Range Mountain Landscape Project' is being implemented by Kerala State Biodiversity Board in 11 selected Grama Panchayats in the three Districts Idukki, Ernakulum and Thrissur. During the first month of the project appointments of staff were completed and equipments and peripherals required for documentation were procured. The work plan included two studies and the major activities during the reporting period included PBR updation, documentation of flora and fauna particularly in the RET and endemic categories, Documentation of tradable bio-resources and identification of Biodiversity important areas, documentation of ecological change (land use and land cover changes), documentation of development history in production sector through interview, PRA, GIS & remote sensing techniques.

The key outcomes during the review period from January 1, 2019 up to November 30, 2019 are

Field visits were conducted in Adimali, Munnar, Devikulam, Marayoor, Kathalloor, Vattavada, Chinnakanal, Mankulam, Kuttampuzha and Athirapilly

- Focal Discussions with knowledge providers conducted in 10 panchayats
- Classes, awareness programmes and interactive sections were conducted for Panchayaths officials and BMCs in 10 panchayats.
- Identified the relevant gap areas in the existing PBR
- Two state level workshops and three consultative meetings with experts/ consultants held for developing a PBR updation methodology
- Based on the knowledge gaps in PBR Checklist of Mosses and liverworts, lichens, algae, medicinal plants as well as commercially potential bioresources of the study area were prepared.
- Seven sectors were prioritized for analysing land use changes and the required maps procured
- Visited 15 tribal settlement during the field work and most of the people face problems of poor transportation facilities, less availability of medical care, water scarcity, increase in man and animal conflict and cultural erosion.

Future Work plan

• Field trip to Edamlakudy and conducting RRA and PRA.

- Analyzing the conservation status of flora and fauna, documenting the illegal and unsustainable wildlife smuggling/ trade.
- Video documentation of specific case studies related to bio-resources and associated Traditional knowledge (TK)/ Biodiversity conservation.
- Documentation of the impact of landslides/ floods on selected ecosystems and keystone/ indicator species.
- Natural resource mapping and Identification of Biodiversity important areas
- Geospatial analysis of various development activities, projects, drivers of change, and their impacts landscape.
- Reviewing impacts of development trajectories on the indigenous and migrant settler communities in the HRML.

Knowledge products under development

Methodology manual for PBR preparation

Dr. V. Balakrishnan

Dr. S. C. Joshi, IFS (Retd.)

(Member secretary)

(Chairman)

3.TECHNICAL DETAILS

1. Project Title

- a) Documentation and compilation of existing information on various taxa (Flora and Fauna), and identification of critical gaps in knowledge in the GEF-Munnar landscape project area
- b) Review of ecological and development history of various sectors and changes in selected ecological units in GEFMunnar landscape project area

2. Project duration: 12 months

- 3. **Total Budget** : Rs. 39,99,600/- (Twenty Three Lakh Ninety Nine Thousand Seven Hundred Sixty Rupees and Zero Paisa Only)
- 4. Project No. and Date of Sanction : Project No. 87493; Agreement dated: 06/12/2018
- 5. Name and Designation of Principal Investigator (PI) : Dr. S. C. Joshi, IFS (Retd.), Chairman, KSBB
- 6. Name and Designation of Co-Investigators (Co-PIs) : Dr. V. Balakrishnan Member secretary, KSBB

7. Name of Staff :

Dr. N. Preetha, KSBB (Technical Associate)

- Project Staff : Mr. A. L. Aneeshkumar, KSBB (Research Associate), Mr. M. K. Justin,
 KSBB (Research Associate), Mr. Reshnu Raj R.S, KSBB (Project Assistant), Miss.
 A. Bindya, KSBB (Project Assistant)
- Institution where work will be carried out : KERALA STATE BIODIVERSITY BOARD, Kailasam T.C.4/1679 (1), No. 43, Belhaven Gardens, Kowdiar P.O., Thiruvananthapuram - 695 003, Ph.No: 0471 - 2724740, Telefax : 0471 2448234. E-mail: keralabiodiversity@gmail.com, Website: www.keralabiodiversity.org
- 9. Study Area :
 - Adimali, Munnar, Devikulam, Marayoor, Kathalloor, Vattavada, Chinnakanal, Mankulam, Edamalakudy, Kuttampuzha, Athirapilly

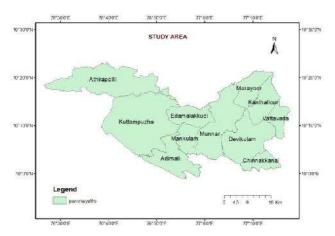
4.Introduction

Herbal-human interaction started since 12,000 years BC. The healing demands of herbal extracts are well documented. The plants which grows on the high altitudes, contain unique novel molecules, which are still unexploited in the modern scientific community, however a large number of species are under the IUCN Red listed categories. All over the world, the demands of plant based herbal products; drugs as well as secondary metabolites of plants are growing rapidly. The conservation status showed that species loss is between 100 and 1000 times higher than the expected natural extinction rate and that the earth is losing at least one potential major drug in every two years.

The IUCN and WWF (World Wide Fund for Nature) reports showed 50,000 and 80,000 flowering plant species are used for medicinal purposes world wide. Among these, 15,000 species are threatened with extinction from overharvesting and habitat destruction and 20 % of their wild relatives have already been nearly exhausted with increasing human consumption. Although this threat has been known for decades, the accelerated loss of species and habitat destruction worldwide has increased the risk of extinction of medicinal plants, especially in India, China and Nepal. The natives inhabiting in the mountain areas developed their own practical methods especially in the field of agriculture, medicine and society's status and values and rituals which are preserved for centuries.

27 % of the world's land surface is covered with mountain environments and 22 % of the world's people depend on these mountain environments for water, energy, timber, food, and opportunities for recreation and spiritual renewal. Mountains are the host of unique ethnic communities, diverse remnants of cultural traditions, ecological acquaintance, habitat adaptations, valuable agricultural gene pools and conventional management practices. Conservation of mountain biodiversity is essential for ecological, economic, social and cultural sectors such as agriculture, forests, tourism, hydropower and mining. So, the prime challenge is to sustainably manage mountain regions for the eradication of poverty and hunger.

In India, 30 % of landmass is covered by mountains (MoEF, 2009) and more than 90 % of hotspots are under this area. The Sahyadris (Western Ghats) of the Indian peninsular plateau runs viz. the six states of India (Gujarat, Maharashtra, Goa, Karnataka, Tamil Nadu and Kerala) which cover 4.8 % of India's land area (Nair, 1991). The major vegetation types in the Western Ghats are Tropical wet evergreen, montane evergreen, moist deciduous, dry thorn and scrub forests and high altitude shola-grasslands ecosystems. The present High Range Mountain Landscape (HRML) area (9038' -10021' N and 76033' - 77018' E) is located in three districts of Kerala (Idukki, Thrissur


and Ernakulum). Geographically it is a horseshoe shaped region with a few high ridges, steep rugged terrain and highly dissected valleys forming the source of two major river systems (Periyar and Chalakkudi). The study area comprises of Anjunad and other connecting areas encompassing Munnar, Devikulam, Chinnakanal, Kanthalloor, Vattavada, Edamalakudi, Marayoor, Mankulam, Adimali, Kuttampuzha and Athirappilly Grama panchayath comprising a total area of 2198.78 km2.

Mountain ecosystems are vast stretches of high-value biodiversity areas (HVBAs). These landscapes contain higher level of endemism and species richness compared to adjoining lowlands. Endemic species are inhabited at the medium altitudes of mountains than lower altitudes in the tropical region. Mountains are the sites of in situ speciation for the taxa. Those taxa found in the higher altitudes of mountains have narrow habitat tolerance and low dispersal capacity; hence these taxa are at high risk from the environmental hazards of climate change.

Now-a-day, mountain landscape face a series of threats particularly habitat fragmentation and overexploitation, which leads to extinction of flora and fauna and rising poverty and hunger for the dependant inhabitants. In view of the importance of mountains landscapes The United Nations General Assembly (UNGA) proclaimed 2002 as the International Year of Mountains (IYM) for the sustainable development of mountain regions.

Landscape is defined as the natural and physical attributes of land together with air and water which change over time and which is known by people's evolving perceptions and associations such as beliefs, uses, values and relationships. The importance of landscapes is mainly concentrated in three major sectors: economic, socio-cultural and ecologic.

The vegetation of Munnar Landscape areas chiefly consists of sholas, grasslands, dry mixed deciduous forest, moist deciduous forest, forest plantations (Eucalyptus, wattle, pine, teak, sandal), commercial plantations, agri-horticultural field and mixed farms. The land use

pattern in areas such as Munnar, Marayoor, Mankulam, Malayattoor, Kothamangalam other than Protected areas (Eravikulam National Park (NP), Chinnar WLS (Wildlife Sanctuary), Idukki WLS, Kurinjimala WLS, Anaimudi NP, Pampadum shola NP, Mathikettan shola NP, Thattekkad Bird Sanctuary) arise as a result of commercial plantations like tea, cardamom, coffee, mixed cultivation and human dominated home gardens. Sandal Reserves of Marayoor are the only compact tract of Sandal forest with mature sandal trees remaining in the country. The Chinnar WLS was formed from the erstwhile Marayoor Range of Munnar Division. It is located in the rain shadow region of Western Ghats and represents a large number of flora and fauna unique to thorny vegetation. It is the only habitat in the state where the endangered Grizzled Giant Squirrel and Indian Star Tortoise were seen. It is an abode of reptilian fauna and the richest in Kerala in terms of the number of species. Eravikulam NP is located in the High Ranges (Kannan Devan Hills) of the Southern Western Ghats in the Devikulam Taluk of Idukki district, having grassland, sholas and shrub forest. Sholas are highly fragile and endangered in the tropics, it has been referred as living fossil. The shola habitat of Anamalai Bio geographical region of Western Ghats has high amount of diversity richness and endemism and it is threatened by anthropogenic pressure. The floral habitat of shola comprise of stunted tress with an umbrella shaped canopy, epiphytic mosses, ferns, lichens and orchids and faunal habitat consisting of insects, amphibians, birds, reptiles and mammals, many of conservation concern.

Anayirankkal Dam, Munnar, Idukki

India's agro-climatic conditions in the Hilly area of Munnar are conducive for the growth of highly diversified floral species which are ecologically and economically vital for the day-to-day livelihoods of natives. The area is phytogeographically unique with highest mountain peaks, river valleys and shola in the windward side and rain shadow region of vertical cliffs on the backward side with diurnal temperature variations. The protected areas are in danger due to encroachments and forest fellings leading to biodiversity loss.

5.PROJECT 1

Documentation and compilation of existing information on various taxa (Flora and Fauna), and identification of critical gaps in knowledge in the GEF-Munnar landscape project area

5.1 AIM

To generate a comprehensive documentation of information on various taxa of Munnar landscape for developing strategies for the conservation of this unique and biodiversity rich landscape of Western Ghats.

5.2OBJECTIVES

- 1. Systematic Group wise and Taxa wise documentation and compilation of available information.
- 2. Documentation of the economically important plants, animals, microbes, insects etc., based on primary and secondary data, their commercial utilization and their threat status.
- 3. Systematic documentation of the impact of landslides/floods on selected ecosystems and keystone/indicator species.
- 4. Updation of PBR of the region and development of a digital platform in ePBR.
- 5. Identification of the research and management priorities for long term conservation of Munnar landscape.

The review meeting conducted on June 18, 2019 with consultative subject experts as well as Technical Agencies from GoI-UNDP-GEF India High Range project, suggested that the work should provide the following outputs.

- 1. Preparation of checklist of Rare, Endangered and Threatened species (RET) and endemic flora of Anjunad valley.
- 2. Identification of Biodiversity Heritage Sites (BHS) and sites for Eco restoration.
- 3. Preparation of checklist of illegal and unsustainable wildlife Smuggling/trade.
- Video Documentation of best practices related to Traditional knowledge (TK)/ Biodiversity conservation.
- 5. Data of bio-resources. with commercial potential and Access and Benefit Sharing

Ficus benghalensis L., Sandal Forest Division, Marayoor

5.3 METHODOLOGY

The objectives of the present studies were categorized in to three divisions (1) Documentation (2) PBR updation and (3) ABS. The following major activities and methodologies was adopted for the study.

a. Documentation

- 1. Collection and compilation of Secondary data (Group/taxa/subject wise) from University libraries, research institutions, journals, websites etc.
- 2. Primary data collection (Group/taxa/subject wise). Transect/Pollard walk or multiple quadrat/ plot method or Point count senses or focal-animal sampling with the participation of subject experts.
- 3. The documentation of bio-resources with commercial potential with the support of representatives of stakeholders via focus group discussions/survey.
- 4. Assigning the threat status of bio-resources based on the primary/secondary data and study will focused on how this affected the HRML ecosystem (with the support of subject experts).
- 5. Documentation of best practices related to Traditional knowledge (TK)/ Biodiversity conservation.

b. PBR updation

- 1. Document critical gap areas in the PBR: based on consultation with BMCs/exisitng PBR registers/panchayath committees/local communities etc.
- 2. Developing a standardised methodology for PBR preparation based on the gaps identified in the existing PBR.
- Check the present status of bio-resources (assign rank based on the % of loss/gain with respect to the secondary data. Also, the Group/taxa/subject wise updation of PBR and its digitization (e-PBR).
- 4. Identification of Biodiversity Heritage Sites (BHS) and sites for Eco restoration and Studying the ongoing changes and forces driving changes in Bio-resources/landscapes and its impact in the livelihoods of native people.

c. Data of bio-resources. with commercial potential and Access and Benefit Sharing

- Compilation of primary and secondary data especially of the economically important bioresources (Group/taxa/subject wise) via Rural Rapid Appraisal (RRA) and Participatory Rural Appraisal (PRA) methods.
- 2. Assigning an index/Rank (category wise) of biological resources involved in Indigenous use/ trading purpose/illegal overexploitation for ABS linking.
- 3. Analyzing the long-term availability/ IUCN status /trade channels/marketing networks/financial transactions of key bioresources thereby improving native people's life.

Identification of critical gap areas by compiling the three objectives and prioritizing research priorities to overcome it.

5.4. DETAILED PROGRESS REPORT

 Consultants were identified in various sectors. Three expert consultative meetings were held. First consultative meeting was held on March 12, 2019 in the Head Quarters of Kerala State Biodiversity Board, Thiruvananthapuram (Annexure I). Second consultative meeting was held on June 26, 2019 (Annexure II). Third consultative meeting was held on November 21 and 22, 2019

- 2. During the first half year of the project, Research personnel (one Research Associate and one project assistant) were appointed.
- Quarterly progress report was presented to the Technical Agencies for the GoIUNDP-GEF India High Range Mountain Landscape Project meeting, held at Hotel Hycinth, Thiruvananthapuram on June 18, 2019 (Annexure III).
- 4. Visited the Libraries of Forest HQ, KSCSTE-JNTBGRI, KSCSTE-KFRI Thiruvananthapuram for secondary data collection. Data on floral and faunal diversities gathered from published literature, scientific papers, new distribution records etc.
- 5. Field level studies were initiated at Adimali, Munnar, Marayoor, Kanthalloor and Devikulam Grama panchayats from 06/05/2019 to 17/05/2019. Classes, awareness programmes and interactive sections were conducted about the importance of the present study and its activities including PBR and its updation, sustainable utilization of bio-recourses, BHS, legal as well as illegal trade of economically relevant biological resources, ecologically significant flora and fauna and its conservation etc. to the Panchayath officials, Biodiversity Management Committees (BMC),

Interactive sections of members of Tribal extension office, Adimali with the research team.

Project fellows, Vaidyas, Government and Non-Governmental officials, farmers, environmental activists etc.

6. Questionnaire format was developed for conducting PRA and RRA for Commercially Potential Bio-resources of HRML study area (**Annexure IV and V**).

A model tribal Hut, Rajeev Gandhi Nature Park, Marayoor

Muthuvan community in Thalanirappan kudi, Adimali

- 7. State level consultation with various stakeholders, scientific experts etc. was held for the identification of gaps in PBR. (Annexure VI).
- 8. For field level data collection, 10 BMC meetings were conducted in 10 Grama Panchayath, except Edamalakudy which could not be done due to bad climate condition and inadequate transport facility.

a. DOCUMENTATION OF FLORISTIC DIVERSITY

As the first phase the gaps in Knowledge of lower groups of plants and rare and endangered species overexploited for medicinal value was addressed and secondary data was compiled. Floristic diversity refers to the variety and variability of plants in a given region. The present study area includes southern montane wet temperate forests (sholas) and the adjoining grasslands (beyond an elevation of 1200 ASL).

Details of the following species were compiled:

- a. A Total of 95 Algal species found in the HRML study area, Anjunadu valley, Kerala (Table 1).
- A total of 194 species of Lichen found in the HRML study area, Anjunadu valley, Kerala (Table 2).

- c. A total of 202 species of Bryophyta found in the HRML study area, Anjunadu valley, Kerala (**Table 3**).
- d. Total of 1148 medicinal plants found in the HRML study area, Anjunadu valley, Kerala (Table 4).

Strobilanthes kunthiana T.Anderson ex Benth.

- e. 96 species of wild edible fruits found in the HRML study area, Anjunadu valley, Kerala (Table 5).
- f. List of 17 selected tradable bio-resources in the HRML study area, Anjunadu valley, Kerala (**Table 6**).

Algal diversity of Idukki during pre-monsoon, monsoon and post-monsoon were analyzed of which phytoplankton's are more rampant during the pre-monsoon followed by postmonsoon and monsoon season. Five groups such as Cyanophyceae (Blue-green algae), Chlorophyceae (Green algae), Bacillariophyceae (Diatoms), Dinophyceae (Dinoflagellates) and Desmids represent the phytoplankton community in Idukki reservoir. Majority of the species comes under the classes Phaeophyceae, Conjugatophyceae, Florideophyceae, Ulvophyceae and Cyanophyceae. 47 % of algal species are Zygnemataceae family followed by Nostocaceae and Oscillatoriaceae (**Table 1**).

The present study area contains large number of species of ecological as well as medicinal important species. A total of 194 species of Lichens were identified, of which 43 % comes under

the family Parmeliaceae (**Table 2**). Majority of these lichens are found in Mannavanshola, Marayoor. A total of 202 species of mosses were documented in the present study area (**Table 3**).

A total of 1148 medicinal plants under 135 families were recorded in the HRML area. Among them, Acanthaceae (40 spp.), Apocynaceae (52 spp.), Asteraceae (47 spp.), Leguminosae (134 spp.), Poaceae (47 spp.) and Rubiaceae (44 spp.) are the prominent families (**Table 4**). Tribal practitioners have been using medicinal plants for treating several diseases. However, a valid scientific data on the usage of such plants is obscure. A wide variety of those plants are coming under RET and endemic category.

b. DOCUMENTATION OF FAUNISTIC DIVERSITY

Lanius schach

The WLS and NP are the in situ conserved areas of RET and endemic faunal species of Amphibians, Reptiles, Mammals, Birds and Insects.

Indian Giant Squirrel or Malabar Giant Squirrel (*Ratufaindica*) is an endemic species found in the Eravikulam National Park, Idukki and Thattekad Wildlife Sanctuaries of Southern Western Ghats. The habitat of species is restricted to tropical evergreen, semi-evergreen and moist deciduous forests. The current population status of this species is declining due to habitat fragmentation and hunting. According to the traditional life style of some tribal's, they used to capture this species for bush meat. This species have a pivotal role in the dispersal of seeds and pollination.

NilgiriTahr (*Nilgiritragushylocrius*) is an endangered and endemic species that inhabits the open montane grassland of the South Western Ghats, India. It is listed in schedule I of The Wildlife (Protection) Act, 1972. It is the only species of mountain ungulates that exists in Eravikulam National Park, which has the largest existing wild population of NilgiriTahr in the world. The Tahr population got reduced due to the spread of wattle *Acacia mearnsii*, poaching, extensive cattle grazing and climate change. They mainly feed on various grasses and forbs such as *Eulalia phaeothrix*, *Andropogon polyptichus*, *Chrysopogon aciculatus*, *Eupatorium adenophoru* and *Strobilanthes kunthianus*.

Nilgiri Pipit (*Anthus nilghiriensis*) is a vulnerable and endemic species that inhabits grasslands and rocky areas of high altitude mountains of southern India. Their population is declining due to ecosystem stresses

such as habitat alteration (conversion of grasslands into plantations of tea and eucalyptus), forest fire, climate change; human intrusions. Invasive species as *Cytisus scoparius*, *Andropogon polyptichus* creates another long term threats to this species.

Palani Laughingthrush (*Trochalopteronfairbanki*) is an endemic species with restricted distribution only to the higher region of Palani hills extending into the Anamalai hills in western

Tamil Nadu and Munnar in Kerala. Based on IUCN red list it is a Near Threatened species. The population status of this species has not been properly studied. Due to its restricted-range, research focussed on their life history and ecology, habitat and monitoring population is urgently needed.

Pied Bushchat (*Saxicolacaprata*) is a least concern species. It inhabits wetlands, shrub lands and grasslands. Its habitat is mainly in open terrain with low to mid-height.

c.COMMERCIALLY EXPLOITED BIO-RESOURCES

Dried stem of Kattu kurumulaku

The economic potential of herbal products in India facilitated rapid growth of phytopharmaceuticals, perfumery and allied industries. One of the major issues the destructive harvesting has brought about is the depletion and scarcity of plant species which are highly exploited for medicine and trade. The collection of species from the wild sources, lead to irreplaceable loss of genetic stock of those species.

There are 28 tribal hamlets under Adimali Scheduled Tribe (ST) Department of which Muthuvan community are high in number which is followed by Mannan community. Hill pulayans and Muthuvans are present in Marayoor also. Sugarcane and Ragi were mainly cultivated in the tribal settlements of Kanthalloor Grama panchayath. In Devikulam Grama panchayath, 400 ha area is under the cultivation of winter crops and vegetables. The Main crops are kale, cabbage, cauliflower, green peas, carrot, fenugreek, beet root, potato, garlic, rose, jasmine, strawberry, passion fruit and tomato etc.

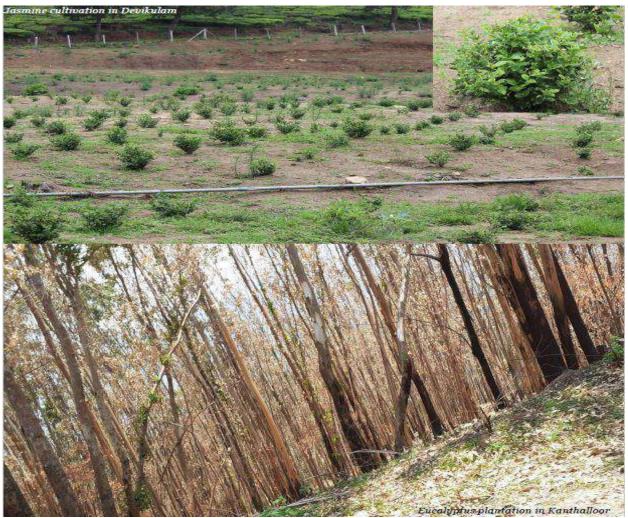
The natives depend on tropical wet evergreen and semi evergreen forest, tropical moist deciduous and dry deciduous forest, montane sub-tropical temperate shoals and grass lands for collecting firewood's, gums and resins, tubers, gooseberry, bark and roots of food and medicinal plants. The unsustainable utilization or overexploitation of those resources (particularly for agriculture and shelter) leads the major cause of depletion of indigenous floral diversity. The development of sustainable utilization and ecofriendly approaches are the promising steps for saving the natural hill ecosystem.

Data was gathered from 'AngadiMarunnu' shops, spices shops, vaidyashalas' etc. Tribals collecting Non-wood forest products (NWFPs), Medicinal plants (Fresh, dried as well as processed materials) and spices from the forests as well as fringe areas, sell the produce to wholesale and retail shops at below marginal amounts. Recently people have started cultivating cash crops like Cardamom, Pepper and Cocco rather than medicinal plants. From the forest they collect enormous quantity of Kattupadavalam, Kattuthippali, Kattukurumulaku, and Karuvapatta.

Chilla' is a non-profitable organization under VanaSamrakshanaSamithi (VSS) in Kerala Forest Department (KFD); they provide facilities to the tribes to sell the Non-timber forest products (NTFPs) through auction. They also help to sell the products into other states particularly in Tamil Nadu. Butterbeans, Kattupadavalam (177 per kg), Lemon grass, sugarcane, Large and small honey, Kodampuli, Ragi, Gooseberry, Kadukka, Padavalakodi are the main products collected by the tribes.

The residents of the tribal settlement on the periphery of the sanctuaries collect NWFPs without any regulatory mechanisms and the rights to NWFP under the Forest Rights Act are yet to be settled. The quantity of NWFPs is not available with the management authority and there are no regulatory mechanisms to quantify the same still now. The quantity of materials collected by the tribes has been taken into prime consideration to ensure fair and equitable sharing of benefits of commercial utilization of bioresources.

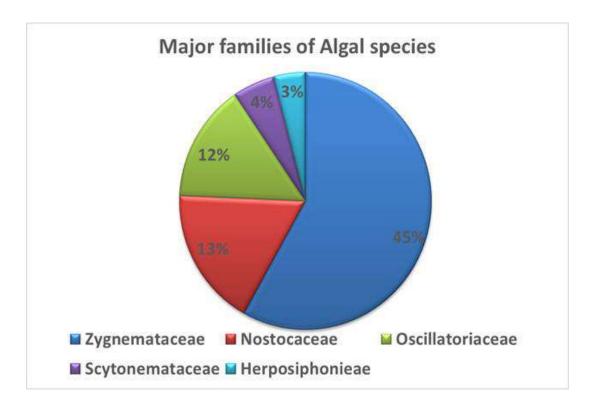
There are 96 plant species of wild edible fruits documented from the HRML study area. The inhabitants of adjoining areas generate income from marketing these fruits (**Table 5**). Karikurinji, Pinari, Marotti and Pachottitholi are the most marketable-value plant species found in the study area (**Table 6**).


Marayoor- Kanthalloor belt in the Marayoor Sandal Reserve Forest is the hub of the largest natural sandalwood species (*Santalum album*) in the Western Ghats. A large number of temples, sandalwood oil factories, ayurvedic drug manufactures and handicrafts developers are the main buyers of Marayoor sandalwood because of its high quality wood and oil content. It has been fetching an average of 1.25 crore per tonne to the exchequer. The class 10 variety, 'Jaipokal', which is of high demand in the industry (sold at 10,500-11,000 per kg in Kerala, however, the same variety is sold at 5,500-6,000 per kg in Karnataka). There were nine cases registered in Marayoor in connection with sandalwood smuggling in 2016. Now, there has been a visible decline in the illegal smuggling of sandalwood, only one case was registered in 2017. Even though, illegal felling is still prevalent in private lands.

Sugarcane was widely cultivated in Pattam colony, Mashi, Koodavayal, Peradipallam and Meladi of Marayoor-kanthalloorpanchayaths. Marayoor jaggery balls (undasharkara) - the sweetest jaggeries from Sugarcane (*Saccharumofficinarum*) made using traditional methods. Ten years ago jaggery balls sold to an amount of Rs. 60 per kg, now the price has fallen to 40 per kg. The costs of sugarcane cultivation and jaggery production is increased, making this unprofitable effecting their livelihood. The farming area has reduced from 2500-2700 ha to 1200-1500 ha and now only 832 farmers were engaged in sugarcane farming in these panchayaths out of 2000 in 10 years ago. The future of remaining farmers is in limbo due to uncertainty of prices and low-quality jaggery from Tamil Nadu under the same label of Marayoor jaggery (Rs 35 to 48 per kg).

5.5.Conclusion

The summary of the progress report of the work including each activities, its progress, key insights, major challenges and deliverables are tabulated (**Table 7**).


List of Tables

S.No.	Species name	Family
1	Anabaena beckii G.De Toni	Nostocaceae
2	Anabaena iyengarii Bharadwaja	Nostocaceae
3	Anabaena oscillarioides Bory ex Bornet & Flahault	Nostocaceae
4	Anabaena torulosa Lagerheim ex Bornet & Flahault	Nostocaceae
5	Aphanothece stagnina (Sprengel) A.Braun in Rabenhorst	Aphanothecaceae
6	Aulosira fertilissima S.L.Ghose	Fortieaceae
7	Bambusina borreri (Ralfs) Cleve	Desmidiaceae
8	Calothrix fusca Bornet & Flahault	Rivulariaceae
9	Calothrix marchica Lemmermann	Rivulariaceae
10	Cephaleuros virescens Kunze ex E.M.Fries	Trentepohliaceae
11	Chaetomorpha antennina (Bory) Kützing	Cladophoraceae
12	Cladophora vagabunda (Linnaeus)	Cladophoraceae
13	<i>Coleofasciculus chthonoplastes</i> (Thuret ex Gomont) M.Siegesmund, J.R.Johansen & T.Friedl	Coleofasciculaceae
14	<i>Cylindrospermum stagnale</i> Bornet & Flahault	Nostocaceae
15	Geitlerinema earlei (N.L.Gardner) Anagnostidis	Coleofasciculaceae
16	Herposiphonia insidiosa (Greville ex J.Agardh) Falkenberg	Herposiphonieae
17	Herposiphonia secunda (C.Agardh) Ambronn	Herposiphonieae
18	Herposiphonia tenella (C.Agardh) Ambronn	Herposiphonieae
19	<i>Kamptonema animale</i> (C.Agardh ex Gomont) Strunecký, Komárek & J.Smarda	Oscillatoriaceae
20	<i>Kamptonema chlorinum</i> (Kützing ex Gomont) Strunecký, Komárek & J.Smarda	Microcoleaceae
21	Kamptonema jasorvense (Vouk) Strunecký, Komárek & J.Smarda	Microcoleaceae
22	Lyngbya confervoides C.Agardh ex Gomont	Oscillatoriaceae
23	Microcoleus paludosus Gomont	Microcoleaceae
24	Microcystis smithii Komárek & Anagnostidis	Microcystaceae
25	Mougeotia adnata M.O.P.Iyengar	Zygnemataceae
26	Mougeotia cherokeana Taft	Zygnemataceae
27	Mougeotia parvula Hassall	Zygnemataceae
28	Mougeotia recurva (Hassall) De Toni	Zygnemataceae
29	Mougeotia tenuissima (De Bary) Czurda	Zygnemataceae
30	Nostoc amplissimum Setchell	Nostocaceae
31	Nostoc calcicola Brébisson ex Bornet & Flahault	Nostocaceae
32	Nostoc carneum C.Agardh ex Bornet & Flahault	Nostocaceae
33	Nostoc linckia Bornet ex Bornet & Flahault	Nostocaceae
34	Nostoc punctiforme Hariot	Nostocaceae
35	Nostoc sphaericum Vaucher ex Bornet & Flahault	Nostocaceae
36	Nostochopsis lobatus H.C.Wood ex Bornet & Flahault	Nostochopsidaceae
37	<i>Oedogonium munnarensis</i> Panikkar & Ampili	Oedogoniaceae
38	Oscillatoria major Vaucher ex Forti	Oscillatoriaceae
39	Oscillatoria ornata Kutzing ex Gomont	Oscillatoriaceae
40	Oscillatoria princeps Vaucher ex Gomont	Oscillatoriaceae

Table 1. Algal diversity in the HRML study area, Anjunadu valley, Kerala

S. No.	Species name	Family
41	Oscillatoria subbrevis var. major (G.S.West) Umezaki & Watanabe	Oscillatoriaceae
42	Oscillatoria tenuis C.Agardh ex Gomont	Oscillatoriaceae
43	<i>Phormidesmis molle</i> (Gomont) Turicchia, Ventura, Komarkova & Komarek	Oscillatoriaceae
44	Phormidium acula (Bruhl & Biswas) Anagnostidis & Komarek	Leptolyngbyaceae
45	Phormidium lucidum Kutzing ex Gomont	Oscillatoriaceae
46	Phormidium stagninum Anagnostidis	Oscillatoriaceae
47	Scytonema guyanense Bornet & Flahault	Oscillatoriaceae
48	Scytonema mirabile Bornet	Scytonemataceae
49	Scytonema simplex Bharadwaja	Scytonemataceae
50	Scytonema tolypothrichoides Kutzing ex Bornet & Flahault	Scytonemataceae
51	Sirocladium himalayense Santra & Adhya	Scytonemataceae
52	Sirocladium kumaoense Randhawa	Zygnemataceae
53	Spirogyra ampilii Ushadevi & Panikkar	Zygnemataceae
54	Spirogyra baileyi Schmidle	Zygnemataceae
55	Spirogyra bullata CC.Jao	Zygnemataceae
56	Spirogyra crenulata R.N.Singh	Zygnemataceae
57	Spirogyra dictyospora CC.Jao	Zygnemataceae
58	Spirogyra flavescens (Hassall) Kützing	Zygnemataceae
59	Spirogyra goetzei Schmidle	Zygnemataceae
60	Spirogyra hymerae Britton & B.H.Smith	Zygnemataceae
61	Spirogyra jaoensis Randhawa	Zygnemataceae
62	Spirogyra jogensis var. minor Iyengar	Zygnemataceae
63	Spirogyra marchica H.Krieger	Zygnemataceae
64	Spirogyra minutifossa CC.Jao	Zygnemataceae
65	Spirogyra rhizobrachilis CC.Jao	Zygnemataceae
66	Spirogyra rhizopus CC.Jao	Zygnemataceae
67	Spirogyra tenuissima (Hassall) Kützing	Zygnemataceae
68	Spirulina labyrinthiformis Gomont	Spirulinaceae
69	Temnogyra punctiformis (Transeau) Yamagishi	Zygnemataceae
70	Tetraedron gracile (Reinsch) Hansgirg	Hydrodictyaceae
71	Tolypothrix magna Bharadwaja	Tolypothrichaceae
72	Trichormus fertilissimus (C.B.Rao) Komárek & Anagnostidis	Nostocaceae
73	<i>Trichormus variabilis</i> (Kützing ex Bornet & Flahault) Komárek & Anag- nostidis	Nostocaceae
74	Westiellopsis prolifica Janet	Hapalosiphonaceae
75	Zygnema atrocoeruleum West & G.S.West	Zygnemataceae
76	Zygnema collinsianum Transeau	Zygnemataceae
, 77	Zygnema cruciatum (Vaucher) C.Agardh	Zygnemataceae
78	Zygnema cyanosporum Cleve	Zygnemataceae
79	Zygnema exuvielliforme (CC.Jao) Krieger	Zygnemataceae
80	Zygnema gedeanum Czurda	Zygnemataceae
81	Zygnema guineense (Gauthier-Lièvre) Stancheva, J.D.Hall, McCourt & Sheath	Zygnemataceae
82	Zygnema heydrichii Schmidle	Zygnemataceae

S. No.	Species name	Family
83	Zygnema himalayense Randhawa	Zygnemataceae
84	Zygnema quadrangulatum CC.Jao	Zygnemataceae
85	Zygnema schwabei Krieger	Zygnemataceae
86	Zygnema spontaneum Nordstedt	Zygnemataceae
87	Zygnema talguppense (M.O.P.Iyengar) Krieger	Zygnemataceae
88	Zygnema vaginatum Klebs	Zygnemataceae
89	Zygogonium arjunanii Usha Devi & Panikkar.	Zygnemataceae
90	Zygogonium capense (Hodgetts) Transeau	Zygnemataceae
91	Zygogonium ericetorum Kützing	Zygnemataceae
92	<i>Zygogonium jayaii</i> Ushadevi et Panikkar	Zygnemataceae
93	Zygogonium sakunthalanii Ushadevi et Panikkar	Zygnemataceae
94	Zygogonium sinense CC.Jao	Zygnemataceae
95	Zygogonium wilsonii Ushadevi et Panikkar	Zygnemataceae

Table 2. Lichen diversity in the HRML study area, Anjunadu valley, Kerala

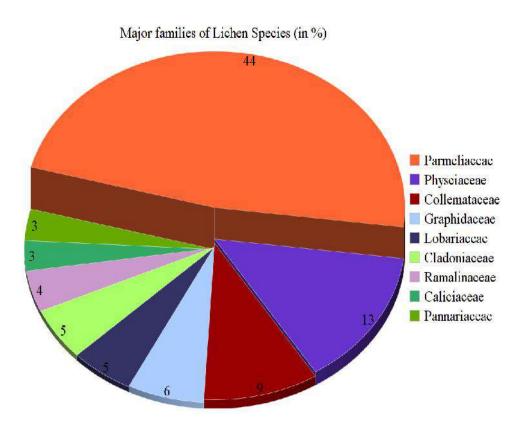
S. No.	Species	Family	Habit	Habitat	Distribution
1	Baeomyces soridiifer Nyl.	Baeomycetaceae	Fruticose	Saxicolous	Chinnamala; Anaimudi, Munnar
2	Brigantiaea fuscolutea (Dicks.) R. Sant.	Lopadiaceae	Microlichen	Crustose	Peerumade
3	<i>Calopadia fusca</i> (Müll. Arg.) Vězda	Pilocarpaceae	Microlichen	Crustose (Epi- phyllous)	Thekkady forest
4	Canoparmelia texana (Tuck.) Elix & Hale	Parmeliaceae	Foliose	Corticolous	Eravikulam National Park, Munnar; Mannavanshola, Marayoor
5	Cladonia carneola (Fr.) Fr.	Cladoniaceae		Terricolous	Anaimudi, Munnar
6	Cladonia ceratophylla (Sw.) Spreng.	Cladoniaceae		Corticolous	Kattapara shola
7	Cladonia coniocraea (Flörke) Spreng.	Cladoniaceae		Corticolous	Pettimudi, Rajamala, Munnar
8	Cladonia decorticate (Flörke) Spreng.	Cladoniaceae		Corticolous	Mannavanshola, Marayoor
9	Cladonia fimbriata (L.) Fr.	Cladoniaceae		Saxicolous	Mannavanshola, Marayoor
10	Cladonia foliacea (Huds.) Willd.	Cladoniaceae		Saxicolous	Uppupara, Periyar Tiger Reserve
11	Cladonia parasitica (Hoffm.) Hoffm.	Cladoniaceae		Saxicolous/ Cor- ticolous	Kallar Estate; Silent Valley Estate, Munnar
12	Cladonia ramulosa (With.) J.R. Laundon	Cladoniaceae		Tericolous/ Cor- ticolous/ Saxico- lous	Mannavanshola, Marayoor; Raja- mala; Anaimudi, Munnar
13	Cladonia scabriuscula (Delise) Nyl.	Cladoniaceae		Tericolous/ Cor- ticolous/ Saxico- lous	Eravikulam National Park; Silent Valley Estate, Munnar; Manna- vanshola, Marayoor
14	Coccocarpia erythroxyli (Spreng.) Swinscow & Krog	Coccocarpiaceae		Corticolous/ Sax- icolous	Mannavanshola, Marayoor; Uppu- para, Periyar Tiger Reserve; Kat- tapara shoal
15	Coccocarpia palmicola (Spreng.) Arv. & D.J. Galloway	Coccocarpiaceae		Corticolous/ Sax- icolous	Chinnamala; Anaimudi, Munnar; Uppupara, Periyar Tiger Reserve; Kattapara shola
16	Coccocarpia pellita (Ach.) Müll. Arg.	Coccocarpiaceae		Corticolous/ Sax- icolous	Eravikulam National Park, Munnar; Uppupara, Periyar Tiger Reserve
17	Collema flaccidum (Ach.) Ach.	Collemataceae	Foliose	Corticolous	Kallar Estate, Munnar
18	Collema subflaccidum Degel.	Collemataceae	Foliose	Corticolous	Kallar Estate, Munnar

S. No.	Species	Family	Habit	Habitat	Distribution
19	<i>Crespoa carneopruinata</i> (Zahlbr.) Lendemer & B.P. Hodk.	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
20	Dermatocarpon vellereum Zschacke	Verrucariaceae	Foliose	Saxicolous	Rajamala, Munnar
21	Eumitria baileyi Stirt.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
22	Eumitria pectinata (Taylor) Articus	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
23	Fibrillithecis halei (Tuck. & Mont.) Mangold	Graphidaceae	Microlichen	-	Devikulam; Cardamom hills; Kumily
24	<i>Heterodermia comosa</i> (Eschw.) Follmann & Redón	Physciaceae	Foliose	Corticolous	Mannavanshola, Marayoor
25	Heterodermia dactyliza (Nyl.) Swinscow & Krog	Physciaceae	Foliose	Corticolous	Eravikulam National Park; Silent Valley Es- tate; Anaimudi slope, Munnar
26	Heterodermia diademata (Taylor) D.D. Awasthi	Physciaceae	Foliose	Corticolous	Eravikulam National Park, Munnar
27	Heterodermia dissecta (Kurok.) D.D. Awasthi	Physciaceae	Foliose	Corticolous/ Sax- icolous	Uppupara, Periyar Tiger Reserve; Kattapara shola
28	Heterodermia flabellata (Fée) D.D. Awasthi	Physciaceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve; Kattapara shola
29	Heterodermia incana (Stirt.) D.D. Awasthi	Physciaceae	Foliose	Corticolous	Pettimudi; Silent Valley Estate, Munnar; Kat- tapara shola
30	Heterodermia koyana (Kurok.) Elix	Physciaceae	Foliose	Corticolous/ Sax- icolous	Silent Valley Estate, Munnar
31	Heterodermia obscurata (Nyl.) Trevis	Physciaceae	Foliose	Corticolous/ Sax- icolous	Eravikulam National Park; Silent Valley Es- tate, Munnar; Mannavanshola, Marayoor
32	<i>Heterodermia pellucida</i> (D.D. Awasthi) D.D. Awasthi	Physciaceae	Foliose	Corticolous	Eravikulam National Park; Pettimudi, Munnar; Kattapara shola; Mannavanshola, Marayoor
33	Heterodermia podocarpa (Bél.) D.D. Awasthi	Physciaceae	Foliose	Corticolous	Kattapara shola
34	<i>Heterodermia pseudospeciosa</i> (Kurok.) W.L. Culb.	Physciaceae	Foliose	Corticolous/ Sax- icolous	Eravikulam National Park; Kattapara shola
35	Heterodermia speciosa (Wulfen) Trevis.	Physciaceae	Foliose	Corticolous	Eravikulam National Park; Silent Valley Estate, Munnar
36	<i>Hyperphyscia aglutinata</i> (Florke) Mayrn. & Poelt	Physciaceae	Foliose	Corticolous	Mannavanshola, Marayoor

S. No.	Species	Family	Habit	Habitat	Distribution
37	Hyperphyscia granulata (Poelt) Moberg	Physciaceae	Foliose	Corticolous	Mannavanshola, Marayoor
38	Hyperphyscia syncolla (Tuck. ex Nyl.) Kalb	Physciaceae	Foliose	Corticolous	Silent Valley Estate, Munnar
39	Hypogymnia pseudobitteriana (D.D. Awasthi	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
40	Hypogymnia vittata (Ach.) Parrique	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
41	Hypotrachyna adducta (Nyl.) Hale	Parmeliaceae	Foliose	Corticolous	Silent Valley Estate, Munnar
42	Hypotrachyna brevirhiza (Kurok.) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor; Kattapara shola
43	<i>Hypotrachyna cirrhata</i> (Fr.) Divakar, A. Crespo, Sipman, Elix & Lumbsch	Parmeliaceae	Foliose	Corticolous	Eravikulam National Park, Munnar; Man- navanshola, Marayoor; Rajamala; Pettimudi; Anaimudi slope, Munnar
44	Hypotrachyna crenata (Kurok.) Hale	Parmeliaceae	Foliose	Corticolous/ Sax- icolous	Kattapara shola
45	Hypotrachyna dactylifera (Vain.) Hale	Parmeliaceae	Foliose	Corticolous	Pettimudi, Munnaar
46	Hypotrachyna degelii (Hale) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor; Kattapara shola
47	Hypotrachyna endochlora (Leight.) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
48	<i>Hypotrachyna expallida</i> (Kurok.) Divakar, A. Crespo, Sipman, Elix & Lumbsch	Parmeliaceae	Foliose	Corticolous	Pettimudi, Munnar; Mannavanshola, Maray- oor; Kattapara shola
49	Hypotrachyna exsecta (Taylor) Hale	Parmeliaceae	Foliose	Corticolous	Pettimudi; Silent Valley Estate, Munnar; Mannavanshola, Marayoor
50	Hypotrachyna formosana (Zahlbr.) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor; Eravikulam Na- tional Park, Munnar
51	Hypotrachyna infirma (Kurok.) Hale	Parmeliaceae	Foliose	Corticolous	Kallar Estate, Munnar; Kattapara shola; Up- pupara, Periyar Tiger Reserve
52	Hypotrachyna masonhalei Pat. & Prabhu	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
53	<i>Hypotrachyna microlobulata</i> (D.D. Awasthi) Divakar, A. Crespo, Sipman, Elix & Lumbsch	Parmeliaceae	Foliose	Corticolous	Kattapara shola
54	<i>Hypotrachyna nepalensis</i> (Taylor) Divakar, A. Crespo, Sipman, Elix & Lumbsch	Parmeliaceae	Foliose	Corticolous/ Ter- ricolous	Eravikulam National Park, Pettimudi, Silent Valley Estate Munnar; Mannavanshola, Marayoor
55	Hypotrachyna orientalis (Hale) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
56	Hypotrachyna revoluta (Florke) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor

S. No.	Species	Family	Habit	Habitat	Distribution
57	<i>Hypotrachyna vexans</i> (Zahlbr. ex W.L. Culb. & C.F.) Divakar, A. Crespo, Sipman, Elix & Lumbsch	Parmeliaceae	Foliose	Corticolous/ Sax- icolous	Pettimudi, Silent Valley Estate, Munnar; Uppupara,Periyar Tiger Reserve
58	<i>Lathagrium auriforme</i> (With.) Otálora, P.M. Jørg. & Wedin	Collemataceae	Foliose	Open moist places	Mannavanshola, Marayoor
59	Lecanora indica Zahlbr.	Lecanoraceae	Placodioid	Saxicolous	Chockanad Estate, Munnar
60	<i>Lepraria pseudoarbuscula</i> (Asahina) Lendemer & B.P. Hodk.	Leprocaulaceae	-	Terricolous/ Cor- ticolous	Mannavanshola, Marayoor; Eravikulam National Park, Munnar
61	<i>Leptogium austroamericanum</i> (Malme) C.W. Dodge	Collemataceae	Foliose	Corticolous	Eravikulam National Park, Munnar
62	Leptogium azureum (Sw.) Mont.	Collemataceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve
63	Leptogium brebissonii Mont.	Collemataceae	Foliose	Corticolous	Silent Valley Estate; Eravikulam National Park, Munnar
64	Leptogium burgessii (L.) Mont.	Collemataceae	Foliose	Corticolous	Mannavanshola, Marayoor
65	Leptogium chloromelum (Ach.) Nyl.	Collemataceae	Foliose	Corticolous	Eravikulam National Park, Munnar
66	Leptogium corticola (Taylor) Tuck.	Collemataceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve
67	Leptogium cyanescens (Ach.) Körb.	Collemataceae	Foliose	Corticolous	Mannavanshola, Marayoor; Lockart, Munnar
68	Leptogium marginellum (Sw.) Gray	Collemataceae	Foliose	Corticolous	Lockart, Munnar
69	Leptogium moluccanum (Pers.) Vain.	Collemataceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve
70	<i>Leptogium phyllocarpum var. phyllocarpum</i> (Pers.) Mont.	Collemataceae	Foliose	Corticolous/ Sax- icolous	Uppupara, Periyar Tiger Reserve
71	Leptogium pichneum (Ach.) Nyl.	Collemataceae	Foliose	Corticolous	Kattapara shola
72	Leptogium tenuisissimum (Discson) Korber.	Collemataceae	Foliose	Corticolous	Rajamala
73	Leptogium ulvaceum (Pers.) Vain.	Collemataceae	Foliose	Corticolous	Silent Valley Estate , Munnar
74	Letrouitia vulpine (Tuck.) Haf. & Bellem.	Letrouitiaceae	Microlichen	Crustose	Anamalai hills; Thekkady forest
75	<i>Leucodermia boryi</i> (Fée) Kalb	Physciaceae	Foliose	Corticolous/ Saxicolous/ Ter- ricolous	Eravikulam National Park, Munnar; Manna- vanshola, Marayoor
76	Leucodermia leucomelos (L.) Kalb	Physciaceae	Foliose	Corticolous	Eravikulam National Park, Munnar; Manna- vanshola, Marayoor

S. No.	Species	Family	Habit	Habitat	Distribution
77	Lobaria retigera var. retigera (Bory) Trevis	Lobariaceae	Foliose	Corticolous	Chockanad Estate; Anaimudi, Munnar; Man- navanshola, Marayoor
78	Lopadium granulosum Patw. & Makhija	Lopadiaceae	Microlichen	Crustose	Devikulam; Thekkady forest
79	Megalospora sulphurata Meyen	Megalosporaceae	Microlichen	Corticolous	Myladumpara, Munnar
80	Megalospora tuberculosa (Fée) Sipman	Megalosporaceae	Microlichen	Corticolous	Myladumpara, Munnar
81	Menegazzia terebrata (Hoffm.) A. Massal.	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
82	Myriotrema microporum (Mont.) Hale	Graphidaceae	Microlichen	Corticolous	Devikulam
83	Ocellularia epitrypa (Nyl.) Hale	Graphidaceae	Microlichen	Corticolous	Cardamom hills, Kumily
84	Ocellularia papillata (Leight.) Zahlbr.	Graphidaceae	Microlichen	Corticolous	Devikulam; Cardamom hills
85	Pannaria leucosticte (Tuck. in Darl.) Nyl.	Pannariaceae	Squamulose	Corticolous	Mannavanshola, Marayoor
86	Pannaria rubiginosa (Thunb. ex Ach.) Delise	Pannariaceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve; Manna- vanshola, Marayoor
87	Parmeliella pannosa (Sw.) Müll. Arg.	Pannariaceae	Foliose	Corticolous	Kattapara shola
88	Parmeliella tryptophylla (Ach.) Mull. Arg.	Pannariaceae	Foliose	Corticolous/ Sax- icolous	Mannavanshola, Marayoor; Uppupara,Periyar Tiger Reserve; Silent Val- ley Estate , Munnar
89	Parmelina indica Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
90	Parmelina subaurulenta (Nyl.) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
91	Parmelinella simplicior (Hale) Elix & Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor; Eravikulam Na- tional Park, Munnar
92	Parmelinella wallichiana (Taylor) Elix & Hale	Parmeliaceae	Foliose	Corticolous/ Sax- icolous	Mannavanshola, Marayoor; Kattapara shola; Uppupara, Periyar Tiger Reserve
93	Parmelinopsis horrescens (Taylor) Elix & Hale	Parmeliaceae	Foliose	Corticolous/ Sax- icolous	Pettimudi, Munnar; Mannavanshola, Maray- oor
94	Parmotrema abessinicum (Nyl. ex Kremp.) Hale	Parmeliaceae	Foliose	Corticolous	Pettimudi; Silent Valley Estate, Munnar
95	Parmotrema arnoldii (Du Rietz) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor; Rajamala, Mun- nar
96	Parmotrema crinitum (Ach.) M. Choisy	Parmeliaceae	Foliose	Corticolous	Pettimudi; Munnar; Uppupara, Periyar Tiger Reserve
97	Parmotrema dilatatum (Vain.) Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor


S. No.	Species	Family	Habit	Habitat	Distribution
98	Parmotrema grayanum (Hue) Hale	Parmeliaceae	Foliose	Corticolous/ Saxicolous	Pettimudi, Munnar; Uppupara, Periyar Tiger Reserve
99	Parmotrema indicum Hale	Parmeliaceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve
100	Parmotrema kamatii Patw. & Prabhu	Parmeliaceae	Foliose	Corticolous	Eravikulam National Park, Munnar
101	Parmotrema mesotropum (Müll. Arg.) Hale	Parmeliaceae	Foliose	Corticolous	Pettimudi, Munnar
102	Parmotrema nilgherrense (Nyl.) Hale	Parmeliaceae	Foliose	Corticolous/ Saxicolous	Chinnamala; Anaimudi, Munnar; Mannavanshola, Marayoor
103	Parmotrema pseudonilgherrense (Asahina) Hale	Parmeliaceae	Foliose	Corticolous	Silent Valley Estate, Munnar
104	Parmotrema reticulatum (Taylor) M. Choisy	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
105	<i>Parmotrema thomsonii</i> (Stirt.) A. Crespo, Divakar & Elix	Parmeliaceae	Foliose	Corticolous	Pettimudi; Silent Valley Estate, Munnar; Mannavanshola, Marayoor
106	Parmotrema tinctorum (Despr. ex Nyl.) Hale	Parmeliaceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve; Silent Valley Estate, Munnar
107	Parmotremopsis phlyctina (Hale) Elix & Hale	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
108	<i>Pectenia plumbea</i> (Lightf.) P.M. Jørg., L. Lindblom, Wedin & S. Ekman	Pannariaceae	Foliose	Corticolous/ Saxicolous	Uppupara, Periyar Tiger Reserve; Eravikulam National Park, Munnar
109	Phaeographis subtigrina (Vain.) Zahlbr.	Graphidaceae	Microlichen	Corticolous	Cardamom hills
110	Phaeophyscia orbicularis (Neck.) Moberg	Physciaceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve
111	Phaeotrema disciforme (Leight.) Hale	Graphidaceae	Microlichen	Corticolous	Thekkady forest
112	Phyllospora coralline (Eschw.) Mull.	Lecidiaceae	Foliose	Corticolous	Pettimudi, Munnar
113	Physcia albinea (Ach.) Nyl.	Physciaceae	Foliose	Saxicolous	Mannavanshola, Marayoor
114	Physcia dimidiata (Arnold) Nyl.	Physciaceae	Foliose	Corticolous	Pettimudi, Munnar
115	Physcia integrata Nyl.	Physciaceae	Foliose	Corticolous	Mannavanshola, Marayoor
116	Physciella nepalensis (Poelt) Essl.	Physciaceae	Foliose	Corticolous	Silent Valley Estate, Munnar
117	Pilophorus awasthianum Ras.	Stereocaulaceae	Fruticose	Saxicolous	Anaimudi top, Munnar
118	<i>Polyblastidium hypocaesium</i> (Yasuda ex Räsänen) Kalb	Physciaceae	Foliose	Corticolous/ Saxicolous	Rajamala, Munnar; Mannavanshola, Marayoor; Uppupara, Periyar Tiger Reserve
119	Polyblastidium microphyllum (Kurok.) Kalb	Physciaceae	Foliose	Corticolous	Anaimudi, Munnar

S. No.	Species	Family	Habit	Habitat	Distribution
120	Polyblastidium togashii (Kurok.) Kalb	Physciaceae	Foliose	Corticolous	Eravikulam National Park; Pettimudi; Chinnamala; Anaimudi; Silent Valley Estate, Munnar; Kattapara shola
121	<i>Pseudocyphellaria argyracea</i> (Delise) Vain.	Lobariaceae	Foliose	Corticolous	Eravikulam National Park; Kallar Estate; Anaimudi, Munnar; Mannavanshola, Marayoor
122	Pseudoparmelia crozalziana (B. de Lesd.) Hale	Parmeliaceae	Foliose	Corticolous	Chinnamala; Anaimudi; Pettimudi, Munnar
123	Psorella isidiophora D.D. Awasthi & Kr.P. Singh	Parmeliaceae	Squamulose	Corticolous	Kattapara shola
124	<i>Pyxine asiatica</i> Vain.	Caliciaceae	Foliose	Saxicolous	Uppupara, Periyar Tiger Reserve
125	<i>Pyxine cylindrica</i> Kashiw.	Caliciaceae	Foliose	Corticolous	Eravikulam National Park; Silent Valley Estate, Munnar
126	Pyxine meissnerina Nyl.	Caliciaceae	Foliose	Corticolous	Mannavanshola, Marayoor
127	<i>Pyxine philippina</i> Vain.	Caliciaceae	Foliose	Corticolous	Kattapara shola
128	<i>Pyxine sorediata</i> (Ach.) Mont.	Caliciaceae	Foliose	Corticolous/ Saxicolous	Mannavanshola, Marayoor
129	Ramalina australiensis Nyl.	Ramalinaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
130	<i>Ramalina inflata subsp. inflata</i> (Hook. f. & Taylor) Hook. f. & Taylor	Ramalinaceae	Fruticose	Corticolous	Anaimudi slope, Munnar
131	Ramalina lacera (With.) J.R. Laundon	Ramalinaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
132	Ramalina pacifica Asahina	Ramalinaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
133	Ramalina roesleri (Hochst. ex Schaer.) Nyl.	Ramalinaceae	Fruticose	Corticolous	Lockart Gap, Munnar
134	Ramalina subampliata (Nyl.) Fink.	Ramalinaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
135	Ramalina taitensis Nyl.	Ramalinaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
136	Heterodermia indica (H. Magn.) D.D. Awasthi	Physciaceae	Foliose	Corticolous	Silent Valley Estate, Munnar
137	Reimnitzia santensis (Tuck.) Kalb	Graphidaceae	Microlichen	Corticolous	Thekkady forest; Cardamom hills
138	Relicina abstrusa (Vain.) Hale	Parmeliaceae	Foliose	Corticolous	Cardamom hills
139	Relicina sydneyensis (Gyeln.) Hale	Parmeliaceae	Foliose	Corticolous	Cardamom hills
140	<i>Remototrachyna awasthii</i> (Hale & Patew.) Divakar & A. Crespo	Parmeliaceae	Foliose	Corticolous	Eravikulam National Park, Pettimudi, Anaimudi, Silent Valley Estate Munnar; Uppupara,Periyar Tiger Reserve

S. No.	Species	Family	Habit	Habitat	Distribution
141	<i>Remototrachyna dodapetta</i> (Hale & Patw.) Divakar & A. Crespo	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor; Pettimudi, Munnar
142	<i>Remototrachyna flexilis</i> (Kurok.) Divakar & A. Crespo	Parmeliaceae	Foliose	Corticolous	Kattapara shola
143	<i>Remototrachyna rigidula</i> (Kurok.) Divakar & A. Crespo	Parmeliaceae	Foliose	Corticolous	Uppupara, Periyar Tiger Reserve
144	<i>Remototrachyna thryptica</i> (Hale) Divakar & A. Crespo	Parmeliaceae	Foliose	Corticolous	Mannavanshola, Marayoor
145	<i>Rhabdodiscus verrucoisidiatus</i> (Nagarkar, Sethy & Patw.) S. Joshi, Upreti & Lücking	Graphidaceae	Microlichen	Corticolous	Devikulam; Cardamom hills
146	Roccella montagnei Bél.	Roccellaceae	Fruticose	Corticolous	Top station, Munnar
147	<i>Sarcographa dendroides</i> (Leight.) Luch & Lücking	Graphidaceae	Microlichen	Corticolous	Cardamom hills
148	<i>Scytinium gelatinosum</i> (With.) Otálora, P.M. Jørg. & Wedin	Collemataceae	Foliose	Corticolous	Silent Valley Estate , Munnar
149	Stegobolus fissus (Müll. Arg.) Frisch	Graphidaceae	Microlichen	Corticolous	Cardamom hills, Kumily
150	Stereocaulon austroindicum I.M. Lamb	Stereocaulaceae	Persistant fruticose	Corticolous/ Saxicolous	Rajamala, Munnar; Uppupara, Periyar Tiger Reserve; Mannavanshola, Marayoor
151	<i>Sticta cyphellulata</i> (Mull. Arg.) Hue	Lobariaceae	Foliose	Corticolous	Eravikulam National Park; Anaimudi; Silent Valley Estate, Munnar; Uppupara, Periyar Tiger Reserve
152	Sticta filix (Sw.) Nyl.	Lobariaceae	Foliose	Corticolous	Kallar Estate; Silent Valley Estate; Anaimudi, Munnar; Mannavanshola, Marayoor
153	Sticta henryana Mull. Arg.	Lobariaceae	Foliose	Corticolous	Pettimudi, Munnar
154	Sticta limbata (Sm.) Ach.	Lobariaceae	Foliose	Corticolous	Silent Valley Estate, Munnar; Uppupara, Periyar Tiger Reserve
155	Sticta neocaledonica (Mull. Arg.) Hue	Lobariaceae	Foliose	Corticolous	Silent Valley Estate, Munnar
156	<i>Sticta orbicularis</i> (A. Braun ex Meyen & Flot.) Hue	Lobariaceae	Foliose	Corticolous	Eravikulam National Park, Munnar; Mannavanshola, Marayoor; Uppupara, Periyar Tiger Reserve
157	Sticta sylvatica (Huds.) Ach.	Lobariaceae	Foliose	Corticolous	Anaimudi, Munnar

S. No.	Species	Family	Habit	Habitat	Distribution
158	<i>Sticta weigelii</i> Isert	Lobariaceae	Foliose	Corticolous	Kattappara shola; Kallar Estate, Munnar; Uppupara, Periyar Tiger Reserve; Mannavanshola, Marayoor
159	Teloschistes flavicans (Sw.) Norman	Teloschistaceae	Fruticose	Corticolous	Mannavanshola, Marayoor; Mattupetti; Top station, Munnar
160	Thelotrema keralense Patw. & Kulk.	Graphidaceae	Microlichen	-	Munnar
161	Usnea austroindica G. Awasthi	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
162	Usnea bimolliuscula Zahlbr.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
163	Usnea bornmuelleri J. Steiner	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor; Rajamala; Anaimudi, Munnar
164	Usnea cineraria Motyka	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
165	Usnea complanata (Müll. Arg.) Motyka	Parmeliaceae	Fruticose	Corticolous	Pettimudi, Munnar
166	<i>Usnea corallina</i> Motyka	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor; Anamalai hills, Munnar
167	Usnea dentritica Stirt.	Parmeliaceae	Fruticose	Corticolous	Eravikulam National Park; Chinnamala; Anaimudi slope, Munnar
168	Usnea eumitrioides Motyka	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
169	<i>Usnea fischeri</i> G. Awasthi	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor; Pettimudi; Mattupetti; Silent Valley Estate, Munnar
170	Usnea fragilis Stirt.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor; Anaimudi slope; Mattupetti, Munnar
171	Usnea gigas Motyka	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
172	<i>Usnea himalayana</i> C. Bab.	Parmeliaceae	Fruticose	Corticolous	Eravikulam National Park; Chinnamala; Anaimudi slope; Silent Valley Estate, Munnar; Mannavanshola, Marayoor
173	Usnea indica Motyka	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
174	Usnea maculata Stirt.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
175	Usnea nepalensis G. Awasthi	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
176	Usnea nilgirica G. Awasthi	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor; Silent Valley Estate, Munnar

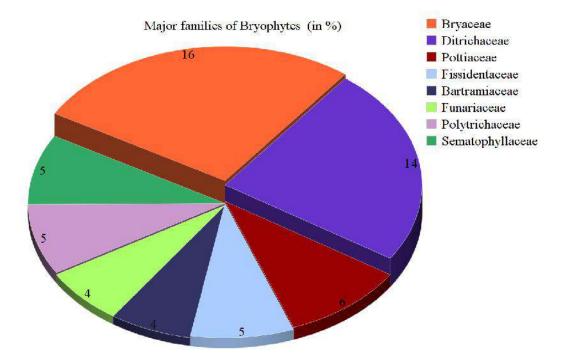
S. No	. Species	Family	Habit	Habitat	Distribution
177	Usnea orientalis Motyka	Parmeliaceae	Fruticose	Corticolous	Eravikulam National Park; Anaimudi slope; Silent Valley Estate, Munnar; Mannavanshola, Marayoor
178	Usnea pangiana Stirt.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
179	Usnea pectinate Tayl.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
180	<i>Usnea picta</i> (J. Steiner) Motyka	Parmeliaceae	Fruticose	Corticolous	Anaimudi slope; Pettimudi; Silent Valley Estate, Munnar; Mannavanshola, Marayoor
181	Usnea pictoides G. Awasthi	Parmeliaceae	Fruticose	Corticolous	Anaimudi slope, Munnar
182	Usnea pseudosinensis Asahina	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
183	<i>Usnea rigidula</i> (Stirt.) G. Awasthi	Parmeliaceae	Fruticose	Corticolous	Rajamala; Silent Valley Estate, Munnar; Mannavanshola, Marayoor
184	Usnea rubicunda Stirt.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor; Eravikulam National Park, Munnar; Silent Valley Estate, Munnar
185	Usnea spinosula Stirt.	Parmeliaceae	Fruticose	Corticolous	Eravikulam National Park, Munnar; Mannavanshola, Marayoor
186	Usnea splendens Stirt.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
187	<i>Usnea stigmatoides</i> G. Awasthi	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor; Kattappara, Rajamala
188	Usnea subchalybeae Zahlbr.	Parmeliaceae	Fruticose	Corticolous	Anaimudi, Munnar; Mannavanshola, Marayoor
189	Usnea subflorida (Zahlbr.) Motyka	Parmeliaceae	Fruticose	Corticolous	Eravikulam National Park, Munnar; Mannavanshola, Marayoor
190	Usnea thomsonii Stirt.	Parmeliaceae	Fruticose	Corticolous	Silent Valley Estate, Munnar
191	Usnea undulata Stirt.	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
192	<i>Usnea vegae</i> Motyka	Parmeliaceae	Fruticose	Corticolous	Silent Valley Estate, Munnar
193	Usnea wasmuthii Rasanen	Parmeliaceae	Fruticose	Corticolous	Mannavanshola, Marayoor
194	Vahliella leucophaea (Vahl) P.M. Jørg.	Pannariaceae	Squamulose- ceustose	Corticolous	Mannavanshola, Marayoor

S.No.	Species	Family	Habitat	Locality
1	Anacolia menziesii (Turner) Paris	Bartramiaceae	Rocks	Attukadu
2	Aneura tenuicostata (Schiffner) Stephani	Aneuraceae		
3	Anisothecium molliculum (Mitt.) Broth.	Dicranaceae	Rocks	Attukadu
4	Anoectangium stracheyanum Mitt.	Pottiaceae		
5	Anomobryum auratum (Mitt.) A. Jaeger	Bryaceae		
6	Anomobryum brachymenioides Dixon & P. de la Varde	Bryaceae	Wet rocks	Munnar
7	Anomobryum cymbifolium (Lindb.) Broth.	Bryaceae	Wet rocks	Athirapalli
8	Anomobryum pellucidum Dixon & Badhw.	Bryaceae	Wet rocks	Attukadu
9	Anthoceros crispulus (Mont.) Douin	Anthocerotaceae		
10	Anthoceros erectus Stephani	Anthocerotaceae		
11	Anthoceros gemmulosus Schiffner & Pande	Anthocerotaceae		
12	Asterella leptophylla (Mont.) Grolle	Aytoniaceae		
13	Asterella wallichiana (Lehm.) Grolle	Aytoniaceae		
14	Atrichum longifolium Cardot & Dixon ex Gangulee	Polytrichaceae	Loose soil	Attukadu
15	Atrichum obtusulum (Müll. Hal.) A. Jaeger	Polytrichaceae	Loose soil	Kannimalai
16	Bartramidula bartramioides (Griff.) Wijk & Margad.	Bartramiaceae		
17	Bartramidula roylei (Hook. f.) Bruch & Schimp.	Bartramiaceae	Wet rocks	Kannimalai
18	Brachymenium acuminatum Harv.	Bryaceae	Wet rocks	Munnar
19	Brachymenium bryoides Hook. ex Schwägr.	Bryaceae		
20	Brachymenium exile (Dozy & Molk.) Bosch & Sande Lac.	Bryaceae		
21	Brachymenium ptychothecium (Besch.) Ochi	Bryaceae	Soil	Poyankutti
22	Brachymenium sikkimense Renauld & Cardot	Bryaceae	Tree bark	Munnar
23	Brachymenium walkeri Broth.	Bryaceae		
24	Brachythecium kamounense (Harv.) A. Jaeger	Brachytheciaceae	Rocks	Devikulam
25	Brachythecium populeum (Hedw.) Schimp.	Brachytheciaceae	Soil	Attukadu
26	Brotherella dixonii Herzog	Sematophyllaceae	Wet rocks	Eravikulam
27	Bryum argenteum Hedw.	Bryaceae		

Table 3. Bryophytes from the HRML study area, Anjunadu valley, Kerala

S.No.	Species	Family	Habitat	Locality
28	Bryum atrovirens Brid.	Bryaceae	Soil	Thekadi
29	Bryum auratum Mitt.	Bryaceae	Wet rocks	Munnar
30	Bryum badhwarii Ochi	Bryaceae		
31	Bryum coronatum Schwägr.	Bryaceae		
32	Bryum dichotomum Hedw.	Bryaceae	Soil	Munnar
33	Bryum pseudotriquetrum (Hedw.) P. Gaertn., B. Mey. & Scherb.	Bryaceae		
34	Bryum uliginosum (Brid.) Bruch & Schimp.	Bryaceae		
35	Callicostella papillata (Mont.) Mitt.	Pilotrichaceae		
36	Calliergon cordifolium (Hedw.) Kindb.	Amblystegiaceae	Wet rocks	Munnar
37	Calycularia crispula Mitt.	Allisoniaceae		
38	Calymperes graeffeanum Müll. Hal.	Calymperaceae		
39	Campylopodiella tenella Cardot	Dicranaceae	Rocks	Athirapalli
40	Campylopus atrovirens De Not.	Dicranaceae		
41	Campylopus flexuosus (Hedw.) Brid.	Dicranaceae	Rocks	Munnar
42	Campylopus fragilis subsp. goughii (Mitt.) JP. Frahm	Dicranaceae	Rocks	Athirapalli
43	Campylopus gracilis (Mitt.) A. Jaeger	Dicranaceae	Rocks	Munnar
44	Campylopus richardii Brid.	Dicranaceae	Rocks	Munnar
45	Campylopus schmidii (Müll. Hal.) A. Jaeger	Dicranaceae	Rocks	Munnar
46	Campylopus subfragilis Renauld & Cardot	Dicranaceae	Rocks	Matupatti
47	Catharinea aculeata (Cardot & P. de la Varde) Broth.	Polytrichaceae	Loose soil	Devikulam
48	Cephaloziella kiaeri (Austin) S.W. Arnell	Cephaloziellaceae		
49	Ceratodon purpureus (Hedw.) Brid.	Ditrichaceae	Soil, rocks and roofs	Kothamangalam
50	Claopodium pellucinerve (Mitt.) Best	Thuidiaceae	Rocks	Munnar
51	Claopodium prionophyllum (Müll. Hal.) Broth.	Thuidiaceae		
52	Cyathodium tuberculatum Udar & D.K. Singh	Targioniaceae		
53	Diaphanodon blandus (Harv.) Renauld & Cardot	Trachypodaceae		
54	Dicladiella cubensis (Mitt.) W.R. Buck	Meteoriaceae		
55	Dicranella macrospora Gangulee	Dicranaceae	Soil	Munnar

S.No.	Species	Family	Habitat	Locality
56	Dicranella spiralis (Mitt.) A. Jaeger	Dicranaceae	Moist soil	Munnar
57	Dicranodontium denudatum (Brid.) E. Britton	Dicranaceae	Rocks	Athirapalli
58	Dicranolejeunea yoshinagana (S. Hatt.) Mizut.	Lejeuneaceae		
59	Ditrichum darjeelingense Renauld & Cardot	Dicranaceae		Poyankutti
60	Ditrichum difficile (Duby) M. Fleisch.	Ditrichaceae		
51	Ditrichum heteromallum (Hedw.) E. Britton	Ditrichaceae	Wet rocks	Thattekad
52	Ditrichum pusillum (Hedw.) Hampe	Ditrichaceae	Rocks	Munnar
53	Ditrichum tortipes (Mitt.) Kuntze	Ditrichaceae	Dry exposed rocks	Munnar
54	Ditrichum tortuloides Grout	Ditrichaceae	Exposed rocks	Thattekad
55	Dumortiera hirsuta (Sw.) Nees	Marchantiaceae		
66	Ectropothecium buitenzorgii (Bél.) Mitt.	Hypnaceae		
57	Ectropothecium dealbatum (Reinw. & Hornsch.) A. Jaeger	Hypnaceae		
68	Entodon laetus (Griff.) A. Jaeger	Entodontaceae	Tree bark	Athirapalli
i9	Entodon macropodus (Hedw.) Müll. Hal.	Entodontaceae		
70	Entodon plicatus Müll. Hal.	Entodontaceae		
71	Entodontopsis nitens (Mitt.) W.R. Buck & R.R. Ireland	Stereophyllaceae		
72	Entosthodon nutans Mitt.	Funariaceae	Rocks	Munnar
'3	Entosthodon wallichii Mitt.	Funariaceae	Rocks	Eravikulam
'4	Entosthodon wichurae M. Fleisch.	Funariaceae		
'5	Erythrodontium julaceum (Hook. ex Schwägr.) Paris	Entodontaceae		
'6	Fabronia pusilla Raddi	Fabroniaceae	Rocks	Idukki
7	Fissidens ceylonensis var. acutifolius Dixon & P. Varde	Fissidentaceae		
'8	Fissidens anomalus Mont.	Fissidentaceae		
'9	Fissidens ceylonensis Dozy & Molk.	Fissidentaceae		
0	Fissidens dubius P. Beauv.	Fissidentaceae		
31	Fissidens hollianus Dozy & Molk.	Fissidentaceae		
32	<i>Fissidens involutus</i> Wilson ex Mitt.	Fissidentaceae		
33	Fissidens polypodioides Hedw.	Fissidentaceae	Soil	Devikulam


S.No.	Species	Family	Habitat	Locality
84	Fissidens schmidii Müll. Hal.	Fissidentaceae		
85	Fissidens taxifolius Hedw.	Fissidentaceae	Soil	Munnar
86	Fissidens zippelianus Dozy & Molk.	Fissidentaceae		
87	Folioceros pandei Udar & Shaheen	Anthocerotaceae		
88	Fossombronia cristula Austin	Fossombroniaceae		
89	Fossombronia himalayensis Kashyap	Fossombroniaceae		
90	Fossombronia indica Stephani	Fossombroniaceae		
91	Frullania tamarisci (L.) Dumort.	Jubulaceae		
92	Funaria hygrometrica Hedw.	Funariaceae		
93	Funaria wijkii R.S. Chopra	Funariaceae	Rocks	Attukadu
94	Garckea flexuosa (Griff.) Margad. & Nork.	Ditrichaceae	Shaded rocks	Adimali
95	Garckea phascoides (Hook.) Müll. Hal.	Ditrichaceae		
96	Hageniella assamica Dixon	Sematophyllaceae	Wet rocks	Eravikulam
97	Haplocladium schimperi Thér.	Thuidiaceae	Litter	Matupatti
98	Heliconema peguense (Besch.) L.T. Ellis & A. Eddy	Calymperaceae	Wet rocks	Charpa
99	Herpetineuron toccoae (Sull. & Lesq.) Cardot	Thuidiaceae	Rocks	Attukadu
100	Homaliodendron exiguum (Bosch & Sande Lac.) M. Fleisch.	Neckeraceae		
101	Homaliodendron flabellatum (Sm.) M. Fleisch.	Neckeraceae		
102	Hydrogonium consanguineum (Thwaites & Mitt.) Hilp.	Pottiaceae		
103	Hydrogonium pseudoehrenbergii (M. Fleisch.) P.C. Chen	Pottiaceae	Wet rocks	Kallar
104	Hymenostylium recurvirostrum (Hedw.) Dixon	Pottiaceae		
105	Hyophila involuta (Hook.) A. Jaeger	Pottiaceae		
106	Hyophila rosea R.S. Williams	Pottiaceae	Rocks	Munnar
107	Hypnum aduncoides (Brid.) Müll. Hal.	Hypnaceae	Soil	Munnar
108	Hypnum setschwanicum (Broth.) Ando	Hypnaceae	Soil	Munnar
109	Isopterygium lignicola (Mitt.) A. Jaeger	Hypnaceae		
110	Isopterygium pohliaecarpum (Sull. & Lesq.) A. Jaeger	Hypnaceae		
111	Leptobryum pyriforme (Hedw.) Wilson	Bryaceae	Rocks	Wariyum

S.No.	Species	Family	Habitat	Locality
112	Leptopterigynandrum decolor (Mitt.) M. Fleisch.	Thuidiaceae	Tree base	Attukadu
113	Lescuraea incurvata (Hedw.) E. Lawton	Leskeaceae	Munnar	Tree bark
114	Leucobryum humillimum Cardot	Dicranaceae		
115	Leucobryum neilgherrense Müll. Hal.	Dicranaceae		
116	Leucoloma amoene-virens Mitt.	Dicranaceae		
117	Lopholejeunea subfusca (Nees) Schiffner	Lejeuneaceae		
118	Macromitrium vohrai Rajeevan	Orthotrichaceae		
119	Macromitrium moorcroftii (Hook. & Grev.) Schwagr.	Orthotrichaceae		
120	Macromitrium nepalense (Hook. & Grev.) Schwagr.	Orthotrichaceae		
121	Marchantia kashyapii Udar & Shaheen	Marchantiaceae		
122	Marchantia palmata Reinw., Nees & Blume	Marchantiaceae		
123	Meiothecium jagorii (Müll. Hal.) Broth.	Sematophyllaceae	Rocks	Athirapalli
124	Meteoriella soluta (Mitt.) S. Okamura	Pterobryaceae	Tree branches	Athirapalli
125	Meteoriopsis reclinata (Müll. Hal.) M. Fleisch.	Meteoriaceae		
126	Meteoriopsis squarrosa (Hook. ex Harv.) M. Fleisch.	Meteoriaceae		
127	Metzgeria nilgiriensis S.C. Srivast. & Udar	Metzgeriaceae		
128	Microcampylopus khasianus (Griffiths) Giese & JP. Frahm	Dicranaceae	Rocks	Rajamalai
129	Microdus brasiliensis (Duby) Thér.	Dicranaceae	Wet rocks	Matupatti
130	Mielichhoferia himalayana Mitt.	Bryaceae	Soil	Munnar
131	Mnium thomsonii Schimp.	Mniaceae	Wet rocks	Matupatti
132	Molendoa sendtneriana (Bruch & Schimp.) Limpr.	Pottiaceae		
133	Myurium borii (Dixon) Magill	Myuriaceae	Tree bark	Eravikulam
134	Nanothecium foreaui Dixon & P. de la Varde	Entodontaceae		
135	Notothylas dissecta Steph	Notothyladaceae		
36	Octoblepharum albidum Hedw.	Octoblepharaceae		
137	Orthodontium infractum Dozy & Molk.	Bryaceae	Tree base	Munnar
138	Orthomnion bryoides (Griff.) Nork.	Mniaceae		
139	Orthotrichum speciosum Nees	Orthotrichaceae	Tree branches	Matupatti

S.No.	Species	Family	Habitat	Locality
140	Oxystegus stenophyllus (Mitt.) Gangulee	Pottiaceae	Soil	Rajamalai
141	Phaeoceros laevis (L.) Prosk.	Anthocerotaceae		
142	Philonotis fontana (Hedw.) Brid.	Bartramiaceae		
143	Philonotis hastata (Duby) Wijk & Margad.	Bartramiaceae		
144	Philonotis leptocarpa Mitt.	Bartramiaceae		
145	Philonotis thwaitesii Mitt.	Bartramiaceae		
146	Physcomitrium eurystomum Sendtn.	Funariaceae		
147	Physcomitrium japonicum (Hedw.) Mitt.	Funariaceae	Soil	Kannimalai
148	<i>Plagiobryum zierii</i> (Dicks. ex Hedw.) Lindb.	Bryaceae	Wet rocks	Attukadu
149	Plagiochasma intermedium Lindenb. & Gottsche	Aytoniaceae		
150	Plagiomnium rostratum (Schrad.) T.J. Kop.	Mniaceae		
151	Plagiothecium cavifolium (Brid.) Z. Iwats.	Plagiotheciaceae	Tree base	Matupatti
152	Pleuridium tenue Mitt.	Ditrichaceae	Wet rocks	Adimali
153	Pogonatum aloides (Hedw.) P. Beauv.	Polytrichaceae	Munnar	Munnar
154	Pogonatum cirratum (Sw.) Brid.	Polytrichaceae	Soil	Matupatti
155	Pogonatum microstomum (R. Br. ex Schwägr.) Brid.	Polytrichaceae	Rocks	Eravikulam
156	Pogonatum neesii (Müll. Hal.) Dozy	Polytrichaceae	Soil	Attukadu
157	Pogonatum perichaetiale (Mont.) A. Jaeger	Polytrichaceae	Wet rocks	Eravikulam
158	Pohlia foreaui Rajeevan	Bryaceae		
159	Pohlia flexuosa Harv.	Bryaceae		
160	Pohlia gedeana (Bosch & Sande Lac.) Gangulee	Bryaceae		
161	Pohlia himalayana (Mitt.) Broth.	Bryaceae	Tree base	Devikulam
162	Pohlia ludwigii (Spreng. ex Schwägr.) Broth.	Bryaceae	Soil	Attukadu
163	<i>Polytrichastrum formosum var. densifolium</i> (Wilson ex Mitt.) Z. Iwats. & Nog.	Polytrichaceae	Soil	Munnar
164	Pseudoneura multifida (L.) Gottsche	Aneuraceae		
165	Pseudosymblepharis bombayensis (Müll. Hal.) P. Sollman	Pottiaceae		
166	Pseudotaxiphyllum elegans (Brid.) Z. Iwats.	Plagiotheciaceae		
167	Pterobryopsis keralensis (Rajeevan) Dix.	Pterobryaceae		

S.No.	Species	Family	Habitat	Locality
168	Pterobryopsis flexipes (Mitt.) M. Fleisch.	Pterobryaceae		
169	Ptychostomum capillare (Hedw.) D. T. Holyoak & N. Pedersen	Bryaceae	Wet rocks	Attukadu
170	Pylaisiadelpha drepanioides Cardot & Dixon	Sematophyllaceae	Wet rocks	Eravikulam
171	Reboulia hemisphaerica (L.) Raddi	Aytoniaceae		
172	Regmatodon declinatus (Hook.) Brid.	Regmatodontaceae	Rocks	Eravikulam
173	Rhabdoweisia crenulata (Mitt.) H. Jameson	Rhabdoweisiaceae	Wet rocks	Kannimalai
74	Rhaphidostichum glauco-virens (Mitt.) Broth.	Sematophyllaceae	Rocks	Matupatti
75	Rhaphidostichum subleptocarpum (Thér. & P. de la Varde) Broth.	Sematophyllaceae		
76	Rhodobryum giganteum (Schwägr.) Paris	Bryaceae		
77	Rhodobryum laxelimbatum (Hampe ex Ochi) Z. Iwats. & T.J. Kop.	Bryaceae	Rocks	Attukadu
78	Riccardia levieri Schiffner	Aneuraceae		
79	Riccia billardieri Mont. & Nees ex Gottsche, Lindenb. & Nees	Ricciaceae		
80	Riccia crustata Trab. ex Grolle	Ricciaceae		
.81	Riccia crystallina L.	Ricciaceae		
82	Riccia stricta (Gottsche, Lindenb. & Nees) Perold	Ricciaceae		
83	Rosulabryum billarderi (Schwägr.) J.R. Spence	Bryaceae		
84	Schiffneriolejeunea indica (Steph.) Udar & Awashti	Lejeuneaceae		
85	Sematophyllum humile (Mitt.) Broth.	Sematophyllaceae	Tree bark	Munnar
86	Sematophyllum subpinnatum (Brid.) E. Britton	Sematophyllaceae	Tree bark	Athirapalli
87	Symphysodontella involuta (Thwaites & Mitt.) M. Fleisch.	Pterobryaceae		
88	Syrrhopodon albidus Thwaites & Mitt.	Calymperaceae		
89	Targionia hypophylla L.	Targioniaceae		
90	Targionia indica Udar & A. Gupta	Targioniaceae		
91	Thuidium cymbifolium (Dozy & Molk.) Dozy & Molk.	Thuidiaceae		
92	Tortula schmidii (Müll. Hal.) Broth.	Pottiaceae		
93	Trachypus bicolor Reinw. & Hornsch.	Trachypodaceae		
94	Trematodon kurzii Hampe ex Gangulee	Bruchiaceae	Sandy soil	Athirapalli
95	Trematodon longicollis Michx.	Bruchiaceae		

S.No.	Species	Family	Habitat	Locality
196	Trematodon schmidii Müll. Hal.	Bruchiaceae	Sandy soil	Adimali
197	Trematodon subulosus Griff.	Bruchiaceae	Soil	Kallar
198	Trichostomum criotum R.H. Zander	Pottiaceae	Rocks	Munnar
199	Trichostomum tenuirostre (Hook. & Taylor) Lindb.	Pottiaceae		

S. No.	Plant name	Family
1	Abelmoschus esculentus (L.) Moench	Malvaceae
2	Abelmoschus manihot (L.) Medik.	Malvaceae
3	Abelmoschus moschatus Medik.	Malvaceae
4	Abrus precatorius L.	Leguminosae
5	Abrus pulchellus Thwaites	Leguminosae
6	Abutilon hirtum (Lam.) Sweet	Malvaceae
7	Abutilon indicum (L.) Sweet	Malvaceae
8	Abutilon persicum (Burm.f.) Merr.	Malvaceae
9	Acacia caesia (L.) Willd.	Leguminosae
10	Acacia catechu (L.f.) Willd.	Leguminosae
11	Acacia chundra (Rottler) Willd.	Leguminosae
12	Acacia dealbata Link	Leguminosae
13	Acacia ferruginea DC.	Leguminosae
14	Acacia leucophloea (Roxb.) Willd.	Leguminosae
15	Acacia melanoxylon R.Br.	Leguminosae
16	Acacia nilotica (L.) Delile	Leguminosae
17	Acacia pennata (L.) Willd.	Leguminosae
18	Acacia planifrons Wight & Arn.	Leguminosae
19	Acacia sinuata (Lour.) Merr.	Leguminosae
20	Acacia torta (Roxb.) Craib	Leguminosae
21	Acalypha ciliata Forssk.	Euphorbiaceae
22	Acalypha fruticosa Forssk.	Euphorbiaceae
23	Acalypha hispida Burm.f.	Euphorbiaceae
24	Acalypha indica L.	Euphorbiaceae
25	Acalypha paniculata Miq.	Euphorbiaceae
26	Acampe praemorsa (Roxb.) Blatt. & McCann	Orchidaceae
27	Acanthospermum hispidum DC.	Asteraceae
28	Achyranthes aspera L.	Amaranthaceae
29	Achyranthes bidentata Blume	Amaranthaceae
30	Acmella paniculata (Wall. ex DC.) R.K.Jansen	Asteraceae
31	Acorus calamus L.	Acoraceae
32	Acronychia pedunculata (L.) Miq.	Rutaceae
33	Acrotrema arnottianum Wight	Dilleniaceae
34	Adenia hondala (Gaertn.) W.J.de Wilde	Passifloraceae
35	Adenia wightiana (Wall. ex Wight & Arn.) Engl.	Passifloraceae
36	Adenostemma lavenia (L.) Kuntze	Asteraceae
37	Aeginetia indica L.	Orobanchaceae
38	Aegle marmelos (L.) Corrêa	Rutaceae
39	Aerva lanata (L.) Juss.	Amaranthaceae
40	Aeschynomene aspera L.	Leguminosae

Table 4. Check list of Medicinal plants in the HRML study area, Anjunadu valley, Kerala

41	Aeschynomene indica L.	Leguminosae
42	Aganosma cymosa (Roxb.) G.Don	Apocynaceae
43	Agave americana L.	Asparagaceae
44	Ageratina adenophora (Spreng.) R.M.King & H.Rob.	Asteraceae
45	Ageratum conyzoides (L.) L.	Asteraceae
46	Ageratum houstonianum Mill.	Asteraceae
47	Aglaia elaeagnoidea (A.Juss.) Benth.	Meliaceae
48	Aglaia lawii (Wight) C.J.Saldanha	Meliaceae
49	Ailanthus excelsa Roxb.	Simaroubaceae
50	Ailanthus triphysa (Dennst.) Alston	Simaroubaceae
51	Alangium salviifolium (L.f.) Wangerin	Cornaceae
52	Albizia amara (Roxb.) B.Boivin	Leguminosae
53	Albizia chinensis (Osbeck) Merr.	Leguminosae
54	Albizia lebbeck (L.) Benth.	Leguminosae
55	Albizia odoratissima (L.f.) Benth.	Leguminosae
56	Albizia procera (Roxb.) Benth.	Leguminosae
57	Albizia saman (Jacq.) Merr.	Leguminosae
58	Allamanda cathartica L.	Apocynaceae
59	Allmania nodiflora (L.) R.Br. ex Wight	Amaranthaceae
60	Allophylus cobbe (L.) Raeusch.	Sapindaceae
61	Allophylus serratus (Hiern) Kurz	Sapindaceae
62	Alloteropsis cimicina (L.) Stapf	Poaceae
63	Alocasia fornicata (Roxb.) Schott	Araceae
64	Aloe vera (L.) Burm.f.	Xanthorrhoeaceae
65	Alpinia calcarata (Haw.) Roscoe	Zingiberaceae
66	Alpinia galanga (L.) Willd.	Zingiberaceae
67	Alpinia malaccensis (Burm.f.) Roscoe	Zingiberaceae
68	Alseodaphne semecarpifolia Nees	Lauraceae
69	Alstonia scholaris (L.) R. Br.	Apocynaceae
70	Alstonia venenata R.Br.	Apocynaceae
71	Alternanthera pungens Kunth	Amaranthaceae
72	Alternanthera sessilis (L.) R.Br. ex DC.	Amaranthaceae
73	Alysicarpus bupleurifolius (L.) DC.	Leguminosae
74	Alysicarpus monilifer (L.) DC.	Leguminosae
75	Alysicarpus vaginalis (L.) DC.	Leguminosae
76	Amaranthus caudatus L.	Amaranthaceae
77	Amaranthus spinosus L.	Amaranthaceae
78	Amaranthus tricolor L.	Amaranthaceae
79	Amaranthus viridis L.	Amaranthaceae
80	Ammannia baccifera L.	Lythraceae
81	Amorphophallus bulbifer (Roxb.) Blume	Araceae
82	Amorphophallus commutatus (Schott) Engl.	Araceae
83	Amorphophallus paeoniifolius (Dennst.) Nicolson	Araceae

84	Ampelocissus indica (L.) Planch.	Vitaceae
85	Ampelocissus tomentosa (B.Heyne & Roth) Planch.	Vitaceae
86	Anacardium occidentale L.	Anacardiaceae
87	Anacolosa densiflora Bedd.	Olacaceae
88	Anamirta cocculus (L.) Wight & Arn.	Menispermaceae
89	Ananas comosus (L.) Merr.	Bromeliaceae
90	Ancistrocladus heyneanus Wall. ex J.Graham	Ancistrocladaceae
91	Andrographis atropurpurea (Dennst.) Alston	Acanthaceae
92	Andrographis paniculata (Burm.f.) Nees	Acanthaceae
93	Anemone rivularis BuchHam. ex DC.	Ranunculaceae
94	Anisochilus carnosus (L.f.) Wall.	Lamiaceae
95	Anisomeles indica (L.) Kuntze	Lamiaceae
96	Annona muricata L.	Annonaceae
97	Annona reticulata L.	Annonaceae
98	Annona squamosa L.	Annonaceae
99	Anodendron paniculatum A.DC.	Apocynaceae
100	Anogeissus latifolia (Roxb. ex DC.) Wall. ex Guillem. & Perr.	Combretaceae
101	Antiaris toxicaria Lesch.	Moraceae
102	Antidesma acidum Retz.	Phyllanthaceae
103	Apluda mutica L.	Poaceae
104	Aporosa cardiosperma (Gaertn.) Merr.	Phyllanthaceae
105	Archidendron bigeminum (L.) I.C.Nielsen	Leguminosae
106	Archidendron clypearia (Jack) I.C.Nielsen	Leguminosae
107	Areca catechu L.	Arecaceae
108	Arenga wightii Griff.	Arecaceae
109	Argyreia cuneata Ker Gawl.	Convolvulaceae
110	Argyreia daltonii C.B.Clarke	Convolvulaceae
111	Argyreia imbricata Santapau & V.Patel	Convolvulaceae
112	Arisaema barnesii C.E.C.Fisch.	Araceae
113	Arisaema leschenaultii Blume	Araceae
114	Arisaema murrayi (J.Graham) Hook.	Araceae
115	Arisaema tortuosum (Wall.) Schott	Araceae
116	Aristida adscensionis L.	Poaceae
117	Aristida setacea Retz.	Poaceae
118	Aristolochia indica L.	Aristolochiaceae
119	Aristolochia tagala Cham.	Aristolochiaceae
120	Artanema longifolium (L.) Vatke	Linderniaceae
121	Artemisia nilagirica (C.B.Clarke) Pamp.	Asteraceae
122	Artocarpus gomezianus Wall. ex Trécul	Moraceae
123	Artocarpus heterophyllus Lam.	Moraceae
124	Artocarpus hirsutus Lam.	Moraceae
125	Asclepias curassavica L.	Apocynaceae
126	Asystasia dalzelliana Santapau	Acanthaceae

127	Asystasia gangetica (L.) T.Anderson	Acanthaceae
128	Atalantia monophylla DC.	Rutaceae
129	Atalantia racemosa Wight ex Hook.	Rutaceae
130	Averrhoa bilimbi L.	Oxalidaceae
131	Averrhoa carambola L.	Oxalidaceae
132	Azadirachta indica A.Juss.	Meliaceae
133	Baccharoides anthelmintica (L.) Moench	Asteraceae
134	Bacopa monnieri (L.) Wettst.	Plantaginaceae
135	Balanophora fungosa subsp. indica (Arn.) B.Hansen	Balanophoraceae
136	Baliospermum solanifolium (Burm.) Suresh	Euphorbiaceae
137	Bambusa bambos (L.) Voss	Poaceae
138	Barleria acuminata Wight ex Nees	Acanthaceae
139	Barleria courtallica Nees	Acanthaceae
140	Barleria cristata L.	Acanthaceae
141	Barleria involucrata Nees	Acanthaceae
142	Barleria mysorensis B.Heyne ex Roth	Acanthaceae
143	Barleria prattensis Santapau	Acanthaceae
144	Barleria prionitis L.	Acanthaceae
145	Bauhinia malabarica Roxb.	Leguminosae
146	Bauhinia phoenicea Wight & Arn.	Leguminosae
147	Bauhinia racemosa Lam.	Leguminosae
148	Bauhinia scandens L.	Leguminosae
149	Bauhinia tomentosa L.	Leguminosae
150	Bauhinia variegata L.	Leguminosae
151	Begonia malabarica Lam.	Begoniaceae
152	Benincasa hispida (Thunb.) Cogn.	Cucurbitaceae
153	Benkara malabarica (Lam.) Tirveng.	Rubiaceae
154	Bentinckia condapanna Berry ex Roxb.	Arecaceae
155	Berberis leschenaultii Wall. ex Wight & Arn.	Berberidaceae
156	Bidens biternata (Lour.) Merr. & Sherff	Asteraceae
157	Bidens pilosa L.	Asteraceae
158	Biophytum reinwardtii (Zucc.) Klotzsch	Oxalidaceae
159	Biophytum sensitivum (L.) DC.	Oxalidaceae
160	Bischofia javanica Blume	Phyllanthaceae
161	Blepharis maderaspatensis (L.) B.Heyne ex Roth	Acanthaceae
162	Blumea axillaris (Lam.) DC.	Asteraceae
163	Blumea eriantha DC.	Asteraceae
164	Blumea lacera (Burm.f.) DC.	Asteraceae
165	Blumea lanceolaria (Roxb.) Druce	Asteraceae
166	Blumea membranacea DC.	Asteraceae
167	Blumea oxyodonta DC.	Asteraceae
168	Blyxa octandra (Roxb.) Planch. ex Thwaites	Hydrocharitaceae
169	Boehmeria macrophylla Hornem.	Urticaceae

170	Boerhavia chinensis (L.) Rottb.	Nyctaginaceae
171	Boerhavia erecta L.	Nyctaginaceae
172	Bombax ceiba L.	Malvaceae
173	Borassus flabellifer L.	Arecaceae
174	Boswellia serrata Roxb. ex Colebr.	Burseraceae
175	Bougainvillea spectabilis Willd.	Nyctaginaceae
176	Brachiaria ramosa (L.) Stapf	Poaceae
177	Brachiaria reptans (L.) C.A.Gardner & C.E.Hubb.	Poaceae
178	Brassica juncea (L.) Czern.	Brassicaceae
179	Breynia retusa (Dennst.) Alston	Phyllanthaceae
180	Breynia vitis-idaea (Burm.f.) C.E.C.Fisch.	Phyllanthaceae
181	Bridelia retusa (L.) A.Juss.	Phyllanthaceae
182	Bridelia stipularis (L.) Blume	Phyllanthaceae
183	Brugmansia suaveolens (Humb. & Bonpl. ex Willd.) Bercht. & J.Presl	Solanaceae
184	Buchanania cochinchinensis (Lour.) M.R.Almeida	Anacardiaceae
185	Bulbophyllum sterile (Lam.) Suresh	Orchidaceae
186	Bulbostylis barbata (Rottb.) C.B.Clarke	Cyperaceae
187	Butea monosperma (Lam.) Taub.	Leguminosae
188	Cadaba fruticosa (L.) Druce	Capparaceae
189	Caesalpinia bonduc (L.) Roxb.	Leguminosae
190	Caesalpinia coriaria (Jacq.) Willd.	Leguminosae
191	Caesalpinia cucullata Roxb.	Leguminosae
192	Caesalpinia decapetala (Roth) Alston	Leguminosae
193	Caesalpinia mimosoides Lam.	Leguminosae
194	Caesalpinia pulcherrima (L.) Sw.	Leguminosae
195	Cajanus cajan (L.) Millsp.	Leguminosae
196	Calamus thwaitesii Becc.	Arecaceae
197	Callicarpa tomentosa (L.) L.	Lamiaceae
198	Calophyllum calaba L.	Clusiaceae
199	Calophyllum inophyllum L.	Clusiaceae
200	Calotropis gigantea (L.) Dryand.	Apocynaceae
201	Camellia sinensis (L.) Kuntze	Theaceae
202	Canarium strictum Roxb.	Burseraceae
203	Canna indica L.	Cannaceae
204	Canscora diffusa (Vahl) R.Br. ex Roem. & Schult.	Gentianaceae
205	Canscora perfoliata Lam.	Gentianaceae
206	Canthium angustifolium Roxb.	Rubiaceae
207	Canthium coromandelicum (Burm.f.) Alston	Rubiaceae
208	Canthium rheedei DC.	Rubiaceae
209	Capparis divaricata Lam.	Capparaceae
210	Capparis roxburghii DC.	Capparaceae
211	Capparis zeylanica L.	Capparaceae

212	Capsicum annuum L.	Solanaceae
213	Carallia brachiata (Lour.) Merr.	Rhizophoraceae
214	Caralluma adscendens (Roxb.) R.Br.	Apocynaceae
215	Caralluma indica (Wight & Arn.) N.E.Br.	Apocynaceae
216	Caralluma umbellata Haw.	Apocynaceae
217	Cardiospermum corindum L.	Sapindaceae
218	Cardiospermum halicacabum L.	Sapindaceae
219	Careya arborea Roxb.	Lecythidaceae
220	Carissa carandas L.	Apocynaceae
221	Caryota urens L.	Arecaceae
222	Cascabela thevetia (L.) Lippold	Apocynaceae
223	Casearia ovata (Lam.) Willd.	Salicaceae
224	Casearia tomentosa Roxb.	Salicaceae
225	Cassia fistula L.	Leguminosae
226	Cassytha filiformis L.	Lauraceae
227	Catharanthus pusillus (Murray) G.Don	Apocynaceae
228	Catharanthus roseus (L.) G.Don	Apocynaceae
229	Cayratia mollissima (Planch.) Gagnep.	Vitaceae
230	Cayratia pedata (Lam.) Gagnep.	Vitaceae
231	Cayratia trifolia (L.) Domin	Vitaceae
232	Ceiba pentandra (L.) Gaertn.	Malvaceae
233	Celosia argentea L.	Amaranthaceae
234	Celtis philippensis Blanco	Cannabaceae
235	Celtis tetrandra Roxb.	Cannabaceae
236	Celtis timorensis Span.	Cannabaceae
237	Centella asiatica (L.) Urb.	Apiaceae
238	Centranthera indica (L.) Gamble	Orobanchaceae
239	Centrosema pubescens Benth.	Leguminosae
240	Cerastium lanceolatum (Poir.) Volponi	Caryophyllaceae
241	Ceropegia beddomei Hook.f.	Apocynaceae
242	Ceropegia candelabrum L.	Apocynaceae
243	Ceropegia juncea Roxb.	Apocynaceae
244	Cestrum nocturnum L.	Solanaceae
245	Chamaecrista absus (L.) H.S.Irwin & Barneby	Leguminosae
246	Chamaecrista mimosoides (L.) Greene	Leguminosae
247	Chassalia curviflora var. ophioxyloides (Wall.) Deb & B.Krishna	Rubiaceae
248	Cheilocostus speciosus (J.Koenig) C.D.Specht	Costaceae
249	Chionachne gigantea (J.Koenig) Veldkamp	Poaceae
250	Chionanthus mala-elengi (Dennst.) P.S.Green	Oleaceae
215	Chloris barbata Sw.	Poaceae
252	Chlorophytum indicum (Willd. ex Schult. & Schult.f.) Dress	Asparagaceae
253	Chonemorpha fragrans (Moon) Alston	Apocynaceae
254	Chromolaena odorata (L.) R.M.King & H.Rob.	Asteraceae

255	Chrysophyllum cainito L.	Sapotaceae
256	Chrysophyllum roxburghii G.Don	Sapotaceae
257	Chrysopogon aciculatus (Retz.) Trin.	Poaceae
258	Chrysopogon fulvus (Spreng.) Chiov.	Poaceae
259	Chukrasia tabularis A.Juss.	Meliaceae
260	Cinnamomum camphora (L.) J.Presl	Lauraceae
261	Cinnamomum cassia (L.) J.Presl	Lauraceae
262	Cinnamomum malabatrum (Burm.f.) J.Presl	Lauraceae
263	Cinnamomum sulphuratum Nees	Lauraceae
264	Cinnamomum verum J.Presl	Lauraceae
265	Cinnamomum wightii Meisn.	Lauraceae
266	Circaea alpina L.	Onagraceae
267	Cirsium wallichii DC.	Asteraceae
268	Cissampelos pareira L.	Menispermaceae
269	Cissus javana DC.	Vitaceae
270	Cissus latifolia Lam.	Vitaceae
271	Cissus quadrangularis L.	Vitaceae
272	Cissus repens Lam.	Vitaceae
273	Cissus vitiginea L.	Vitaceae
274	Citrullus colocynthis (L.) Schrad.	Cucurbitaceae
275	<i>Citrullus lanatus</i> (Thunb.) Matsum. & Nakai	Cucurbitaceae
276	Citrus limon (L.) Osbeck	Rutaceae
277	Citrus medica L.	Rutaceae
278	Cleisostoma tenuifolium (L.) Garay	Orchidaceae
279	Clematis gouriana Roxb. ex DC.	Ranunculaceae
280	Clematis smilacifolia Wall.	Ranunculaceae
281	Clematis wightiana Wall.	Ranunculaceae
282	Cleome monophylla L.	Cleomaceae
283	<i>Cleome rutidosperma var. burmannii</i> (Wight & Arn.) Siddiqui & S.N.Dixit	Cleomaceae
284	Cleome viscosa L.	Cleomaceae
285	Clerodendrum indicum (L.) Kuntze	Lamiaceae
286	Clerodendrum infortunatum L.	Lamiaceae
287	Clerodendrum phlomoides hort. ex DC.	Lamiaceae
288	Clitoria ternatea L.	Leguminosae
289	Coccinia grandis (L.) Voigt	Cucurbitaceae
290	Cocculus laurifolius DC.	Menispermaceae
 291	Cochlospermum religiosum (L.) Alston	Bixaceae
- <u>)</u> - 292	Cocos nucifera L.	Arecaceae
- <i>9</i> - 293	Codariocalyx motorius (Houtt.) H.Ohashi	Leguminosae
<u>-95</u> 294	Coffea arabica L.	Rubiaceae
29 <u>4</u> 295	Coix lacryma-jobi L.	Poaceae
295 296	Coldenia procumbens L.	Boraginaceae

297	Colebrookea oppositifolia Sm.	Lamiaceae
298	Colocasia esculenta (L.) Schott	Araceae
299	Combretum indicum (L.) DeFilipps	Combretaceae
300	Commelina benghalensis L.	Commelinaceae
301	Commelina diffusa Burm.f.	Commelinaceae
302	Commiphora berryi (Arn.) Engl.	Burseraceae
303	Commiphora caudata (Wight & Arn.) Engl.	Burseraceae
304	Connarus monocarpus L.	Connaraceae
305	Corallocarpus epigaeus (Rottler) Hook.f.	Cucurbitaceae
306	Corchorus aestuans L.	Malvaceae
307	Coriandrum sativum L.	Apiaceae
308	Corypha umbraculifera L.	Arecaceae
309	Coscinium fenestratum (Goetgh.) Colebr.	Menispermaceae
310	Cosmostigma cordatum (Poir.) M.R.Almeida	Apocynaceae
311	Crassocephalum crepidioides (Benth.) S.Moore	Asteraceae
312	Crateva adansonii DC.	Capparaceae
313	Crateva religiosa G.Forst.	Capparaceae
314	Crinum asiaticum L.	Amaryllidaceae
315	Crinum latifolium L.	Amaryllidaceae
316	Crossandra infundibuliformis (L.) Nees	Acanthaceae
317	Crotalaria albida Roth	Leguminosae
318	Crotalaria calycina Schrank	Leguminosae
319	Crotalaria juncea L.	Leguminosae
320	Crotalaria medicaginea Lam.	Leguminosae
321	Crotalaria mysorensis Roth	Leguminosae
322	Crotalaria pallida Aiton	Leguminosae
323	Crotalaria spectabilis Roth	Leguminosae
324	Crotalaria verrucosa L.	Leguminosae
325	Croton bonplandianus Baill.	Euphorbiaceae
326	Croton caudatus Geiseler	Euphorbiaceae
327	Croton malabaricus Bedd.	Euphorbiaceae
328	Croton tiglium L.	Euphorbiaceae
329	Croton zeylanicus Müll.Arg.	Euphorbiaceae
330	<i>Cryptostegia grandiflora</i> Roxb. ex R.Br.	Apocynaceae
331	Ctenolepis garcini (L.) C.B.Clarke	Cucurbitaceae
332	Cucumis leiospermus (Wight & Arn.) Ghebret. & Thulin	Cucurbitaceae
333	Cucumis melo L.	Cucurbitaceae
334	Cucumis prophetarum L.	Cucurbitaceae
335	Cucumis sativus L.	Cucurbitaceae
336	Cucurbita maxima Duchesne	Cucurbitaceae
337	Cucurbita pepo L.	Cucurbitaceae
338	Cullenia exarillata A.Robyns	Malvaceae
339	Curculigo orchioides Gaertn.	Hypoxidaceae

340	Curcuma aromatica Salisb.	Zingiberaceae
341	Curcuma longa L.	Zingiberaceae
342	Curcuma montana Roxb.	Zingiberaceae
343	Curcuma zedoaria (Christm.) Roscoe	Zingiberaceae
344	Cuscuta chinensis Lam.	Convolvulaceae
345	Cuscuta reflexa Roxb.	Convolvulaceae
346	Cyanotis axillaris (L.) D.Don ex Sweet	Commelinaceae
347	Cyanotis cristata (L.) D.Don	Commelinaceae
348	Cyanotis papilionacea (Burm.f.) Schult. & Schult.f.	Commelinaceae
349	Cyanthillium albicans (DC.) H.Rob.	Asteraceae
350	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
351	<i>Cyathula prostrata</i> (L.) Blume	Amaranthaceae
352	Cyclea fissicalyx Dunn	Menispermaceae
353	Cyclea peltata (Lam.) Hook.f. & Thomson	Menispermaceae
354	Cymbidium aloifolium (L.) Sw.	Orchidaceae
355	<i>Cymbopogon caesius</i> (Hook. & Arn.) Stapf	Poaceae
356	<i>Cymbopogon citratus</i> (DC.) Stapf	Poaceae
357	<i>Cymbopogon flexuosus</i> (Nees ex Steud.) W.Watson	Poaceae
358	Cynodon dactylon (L.) Pers.	Poaceae
359	Cyperus compressus L.	Cyperaceae
360	Cyperus diffusus Vahl	Cyperaceae
361	Cyperus distans L.f.	Cyperaceae
362	Cyperus exaltatus Retz.	Cyperaceae
363	Cyperus haspan L.	Cyperaceae
364	Cyperus iria L.	Cyperaceae
365	Cyperus malaccensis Lam.	Cyperaceae
366	<i>Cyperus nutans var. eleusinoides</i> (Kunth) Haines	Cyperaceae
367	Cyperus pangorei Rottb.	Cyperaceae
368	Cyperus pilosus Vahl	Cyperaceae
369	Cyperus rotundus L.	Cyperaceae
370	Dalbergia lanceolaria L.f.	Leguminosae
371	Dalbergia latifolia Roxb.	Leguminosae
372	Dalbergia sissoides Wight & Arn.	Leguminosae
373	Dalbergia volubilis Roxb.	Leguminosae
374	Daphniphyllum neilgherrense (Wight) K.Rosenthal	Daphniphyllaceae
375	Datura metel L.	Solanaceae
376	Debregeasia longifolia (Burm.f.) Wedd.	Urticaceae
377	Decalepis hamiltonii Wight & Arn.	Apocynaceae
378	Delonix regia (Hook.) Raf.	Leguminosae
379	Dendrobium nodosum Dalzell	Orchidaceae
380	Dendrobium ovatum (L.) Kraenzl.	Orchidaceae
381	Dendrocalamus strictus (Roxb.) Nees	Poaceae
382	Dendrocnide sinuata (Blume) Chew	Urticaceae

383	Dendrolobium triangulare (Retz.) Schindl.	Leguminosae
384	Dendrophthoe falcata (L.f.) Ettingsh.	Loranthaceae
385	Dentella repens (L.) J.R.Forst. & G.Forst.	Rubiaceae
386	Derris scandens (Roxb.) Benth.	Leguminosae
387	Desmodium gangeticum (L.) DC.	Leguminosae
388	Desmodium heterocarpon var. strigosum Meeuwen	Leguminosae
389	Desmodium heterophyllum (Willd.) DC.	Leguminosae
390	Desmodium laxiflorum DC.	Leguminosae
391	Desmodium microphyllum (Thunb.) DC.	Leguminosae
392	Desmodium styracifolium (Osbeck) Merr.	Leguminosae
393	Desmodium triflorum (L.) DC.	Leguminosae
394	Desmodium velutinum (Willd.) DC.	Leguminosae
395	Dichrocephala integrifolia (L.f.) Kuntze	Asteraceae
396	Dichrostachys cinerea (L.) Wight & Arn.	Leguminosae
397	Dicliptera cuneata Nees	Acanthaceae
398	Dicliptera paniculata (Forssk.) I.Darbysh.	Acanthaceae
399	Digera muricata (L.) Mart.	Amaranthaceae
400	Dillenia pentagyna Roxb.	Dilleniaceae
401	Dimocarpus longan Lour.	Sapindaceae
402	Diospyros bourdillonii Brandis	Ebenaceae
403	Diospyros buxifolia (Blume) Hiern	Ebenaceae
404	Diospyros candolleana Wight	Ebenaceae
405	Diospyros ebenum J.Koenig ex Retz.	Ebenaceae
406	Diospyros malabarica (Desr.) Kostel.	Ebenaceae
407	Diospyros melanoxylon Roxb.	Ebenaceae
408	Diospyros montana Roxb.	Ebenaceae
409	Diospyros paniculata Dalzell	Ebenaceae
410	Diospyros sylvatica Roxb.	Ebenaceae
411	Diospyros vera (Lour.) A.Chev.	Ebenaceae
412	Diploclisia glaucescens (Blume) Diels	Menispermaceae
413	Diplocyclos palmatus (L.) C.Jeffrey	Cucurbitaceae
414	Dipteracanthus prostratus (Poir.) Nees	Acanthaceae
415	Dodonaea viscosa (L.) Jacq.	Sapindaceae
416	Dolichandrone arcuata (Wight) C.B.Clarke	Bignoniaceae
417	Dolichos trilobus L.	Leguminosae
418	Dopatrium junceum (Roxb.) BuchHam. ex Benth.	Plantaginaceae
419	Dregea volubilis (L.f.) Benth. ex Hook.f.	Apocynaceae
420	Drymaria cordata (L.) Willd. ex Schult.	Caryophyllaceae
421	Dysoxylum malabaricum Bedd. ex C.DC.	Meliaceae
422	Ecbolium viride (Forssk.) Alston	Acanthaceae
423	Echinochloa crus-galli (L.) P.Beauv.	Poaceae
424	Echinochloa stagnina (Retz.) P.Beauv.	Poaceae
425	Eclipta prostrata (L.) L.	Asteraceae

426	Eichhornia crassipes (Mart.) Solms	Pontederiaceae
427	Elaeagnus conferta Roxb.	Elaeagnaceae
428	Elaeocarpus munroii Mast.	Elaeocarpaceae
429	Elaeocarpus serratus L.	Elaeocarpaceae
430	<i>Elaeocarpus tuberculatus</i> Roxb.	Elaeocarpaceae
431	Elatostema lineolatum Wight	Urticaceae
432	Elephantopus scaber L.	Asteraceae
433	Elettaria cardamomum (L.) Maton	Zingiberaceae
434	Eleusine indica (L.) Gaertn.	Poaceae
435	Elytranthe parasitica (L.) Danser	Loranthaceae
436	Embelia ribes Burm.f.	Primulaceae
437	Emilia sonchifolia (L.) DC. ex DC.	Asteraceae
438	Entada rheedii Spreng.	Leguminosae
439	<i>Eragrostis gangetica</i> (Roxb.) Steud.	Poaceae
440	Eragrostis nutans (Retz.) Nees ex Steud.	Poaceae
441	<i>Eragrostis viscosa</i> (Retz.) Trin.	Poaceae
442	Erigeron bonariensis L.	Asteraceae
443	Erigeron trilobus (Decne.) Boiss.	Asteraceae
444	Eriocaulon sexangulare L.	Eriocaulaceae
445	Eriolaena hookeriana Wight & Arn.	Malvaceae
446	Eriolaena lushingtonii Dunn	Malvaceae
447	Eriolaena quinquelocularis (Wight & Arn.) Wight	Malvaceae
448	Erycibe paniculata Roxb.	Convolvulaceae
449	Erythrina stricta Roxb.	Leguminosae
450	Erythrina suberosa Roxb.	Leguminosae
451	Erythropalum scandens Blume	Olacaceae
452	Eucalyptus camaldulensis Dehnh.	Myrtaceae
453	Eucalyptus globulus Labill.	Myrtaceae
454	Eucalyptus tereticornis Sm.	Myrtaceae
455	Eugenia roxburghii DC.	Myrtaceae
456	Eulophia epidendraea (J.Koenig ex Retz.) C.E.C.Fisch.	Orchidaceae
457	Eulophia pratensis Lindl.	Orchidaceae
458	Eulophia spectabilis (Dennst.) Suresh	Orchidaceae
459	<i>Euonymus crenulatus</i> Wall. ex Wight & Arn.	Celastraceae
460	Euonymus indicus B.Heyne ex Wall.	Celastraceae
461	Euonymus serratifolius Bedd.	Celastraceae
462	Euphorbia antiquorum L.	Euphorbiaceae
463	Euphorbia hirta L.	Euphorbiaceae
464	Euphorbia milii Des Moul.	Euphorbiaceae
465	Euphorbia nivulia BuchHam.	Euphorbiaceae
466	Euphorbia pulcherrima Willd. ex Klotzsch	Euphorbiaceae
467	Euphorbia rosea Retz.	Euphorbiaceae
468	Euphorbia rothiana Spreng.	Euphorbiaceae

469	Euphorbia thymifolia L.	Euphorbiaceae
470	Euphorbia tirucalli L.	Euphorbiaceae
471	Euphorbia tortilis Rottler ex Ainslie	Euphorbiaceae
472	<i>Eurya nitida</i> Korth.	Pentaphylacaceae
473	Evolvulus alsinoides (L.) L.	Convolvulaceae
474	Evolvulus nummularius (L.) L.	Convolvulaceae
475	<i>Exacum tetragonum</i> Roxb.	Gentianaceae
476	Excoecaria agallocha L.	Euphorbiaceae
477	Fagraea ceilanica Thunb.	Gentianaceae
478	Ficus amplissima Sm.	Moraceae
479	Ficus arnottiana (Miq.) Miq.	Moraceae
480	Ficus benghalensis L.	Moraceae
481	Ficus callosa Willd.	Moraceae
482	Ficus dalhousiae Miq.	Moraceae
483	Ficus drupacea Thunb.	Moraceae
484	<i>Ficus elastica</i> Roxb. ex Hornem.	Moraceae
485	Ficus exasperata Vahl	Moraceae
486	Ficus hispida L.f.	Moraceae
487	Ficus microcarpa L.f.	Moraceae
488	Ficus mollis Vahl	Moraceae
489	Ficus racemosa L.	Moraceae
490	Ficus religiosa L.	Moraceae
491	Ficus talbotii King	Moraceae
492	<i>Ficus tinctoria</i> subsp. gibbosa (Blume) Corner	Moraceae
493	Ficus tsjakela Burm.f.	Moraceae
494	Filicium decipiens (Wight & Arn.) Thwaites	Sapindaceae
495	<i>Fimbristylis bisumbellata</i> (Forssk.) Bubani	Cyperaceae
496	Fimbristylis falcata (Vahl) Kunth	Cyperaceae
497	Fimbristylis ovata (Burm.f.) J.Kern	Cyperaceae
498	Firmiana colorata (Roxb.) R.Br.	Malvaceae
499	Firmiana simplex (L.) W.Wight	Malvaceae
500	Flacourtia indica (Burm.f.) Merr.	Salicaceae
501	Flemingia grahamiana Wight & Arn.	Leguminosae
502	Flemingia macrophylla (Willd.) Merr.	Leguminosae
503	Flemingia semialata Roxb.	Leguminosae
504	Flemingia strobilifera (L.) W.T.Aiton	Leguminosae
505	Flemingia wightiana Wight & Arn.	Leguminosae
506	Floscopa scandens Lour.	Commelinaceae
507	Galinsoga parviflora Cav.	Asteraceae
508	Galium asperifolium Wall.	Rubiaceae
509	Garcinia cowa Roxb. ex Choisy	Clusiaceae
510	Garcinia gummi-gutta (L.) Roxb.	Clusiaceae
511	Garcinia mangostana L.	Clusiaceae

512	Garcinia morella (Gaertn.) Desr.	Clusiaceae
513	Garcinia spicata Hook.f.	Clusiaceae
514	Garcinia wightii T.Anderson	Clusiaceae
515	Gardenia gummifera L.f.	Rubiaceae
516	Gardenia jasminoides J.Ellis	Rubiaceae
517	Gardenia resinifera Roth	Rubiaceae
518	Geodorum densiflorum (Lam.) Schltr.	Orchidaceae
519	Geophila repens (L.) I.M.Johnst.	Rubiaceae
520	Getonia floribunda Roxb.	Combretaceae
521	<i>Girardinia diversifolia</i> (Link) Friis	Urticaceae
522	Gisekia pharnaceoides L.	Gisekiaceae
523	Glinus lotoides L.	Molluginaceae
524	Glinus oppositifolius (L.) Aug.DC.	Molluginaceae
525	Globba marantina L.	Zingiberaceae
526	Gloriosa superba L.	Colchicaceae
527	<i>Glycosmis macrocarpa</i> Wight	Rutaceae
528	<i>Glycosmis mauritiana</i> (Lam.) Tanaka	Rutaceae
529	Glycosmis pentaphylla (Retz.) DC.	Rutaceae
530	<i>Gmelina arborea</i> Roxb.	Lamiaceae
531	Gmelina asiatica L.	Lamiaceae
532	Gomphrena celosioides Mart.	Amaranthaceae
533	Gomphrena globosa L.	Amaranthaceae
534	Goniothalamus wightii Hook.f. & Thomson	Annonaceae
535	Gordonia obtusa Wall. ex Wight	Theaceae
536	Gouania microcarpa DC.	Rhamnaceae
537	Grangea maderaspatana (L.) Poir.	Asteraceae
538	<i>Grevillea robusta</i> A.Cunn. ex R.Br.	Proteaceae
539	Grewia laevigata Vahl	Malvaceae
540	Grewia villosa Willd.	Malvaceae
541	<i>Grewia abutilifolia</i> Vent. ex Juss.	Malvaceae
542	Grewia bracteata Roth	Malvaceae
543	Grewia heterotricha Mast.	Malvaceae
544	Grewia hirsuta Vahl	Malvaceae
545	Grewia oppositifolia Roxb. ex DC.	Malvaceae
546	Grewia orbiculata Rottler	Malvaceae
547	<i>Grewia tiliifolia</i> Vahl	Malvaceae
548	<i>Gymnema khandalense</i> Santapau	Apocynaceae
549	<i>Gymnema sylvestre</i> (Retz.) R.Br. ex Sm.	Apocynaceae
550	Gymnostachyum febrifugum Benth.	Acanthaceae
551	<i>Gynura pseudo-china</i> Benth.	Asteraceae
552	Habenaria crinifera Lindl.	Orchidaceae
553	Habenaria furcifera Lindl.	Orchidaceae
554	Habenaria longicorniculata J.Graham	Orchidaceae

555	Habenaria plantaginea Lindl.	Orchidaceae
556	Habenaria rariflora A.Rich.	Orchidaceae
557	Habenaria roxburghii Nicolson	Orchidaceae
558	Hackelochloa granularis (L.) Kuntze	Poaceae
559	Haldina cordifolia (Roxb.) Ridsdale	Rubiaceae
560	Hamelia patens Jacq.	Rubiaceae
561	Hardwickia binata Roxb.	Leguminosae
562	Harpullia arborea (Blanco) Radlk.	Sapindaceae
563	Hedychium coronarium J.Koenig	Zingiberaceae
564	Hedyotis articularis R.Br. ex G.Don	Rubiaceae
565	Helicteres isora L.	Malvaceae
566	Heliotropium indicum L.	Boraginaceae
567	Helixanthera wallichiana Danser	Loranthaceae
568	Hemidesmus indicus (L.) R. Br. ex Schult.	Apocynaceae
569	Heracleum candolleanum Gamble	Apiaceae
570	Heracleum rigens Wall. ex DC.	Apiaceae
571	Heritiera papilio Bedd.	Malvaceae
572	Heteropogon contortus (L.) P.Beauv. ex Roem. & Schult.	Poaceae
573	Hewittia malabarica (L.) Suresh	Convolvulaceae
574	<i>Heynea trijuga</i> Roxb. ex Sims	Meliaceae
575	Hibiscus hispidissimus Griff.	Malvaceae
576	Hibiscus lunariifolius Willd.	Malvaceae
577	Hibiscus micranthus L.f.	Malvaceae
578	Hibiscus mutabilis L.	Malvaceae
579	Hibiscus rosa-sinensis L.	Malvaceae
580	Hibiscus sabdariffa L.	Malvaceae
581	Hibiscus surattensis L.	Malvaceae
582	Hiptage benghalensis (L.) Kurz	Malpighiaceae
583	Holarrhena pubescens Wall. ex G.Don	Apocynaceae
584	Holigarna arnottiana Hook.f.	Anacardiaceae
585	Holigarna ferruginea Marchand	Anacardiaceae
586	Holigarna grahamii (Wight) Kurz	Anacardiaceae
587	Holigarna nigra Bourd.	Anacardiaceae
588	Holoptelea integrifolia Planch.	Ulmaceae
589	Holostemma ada-kodien Schult.	Apocynaceae
590	Hoya wightii Hook.f.	Apocynaceae
591	Hoya ovalifolia Wight & Arn.	Apocynaceae
592	Humboldtia vahliana Wight	Leguminosae
593	Hunteria zeylanica (Retz.) Gardner ex Thwaites	Apocynaceae
594	Hybanthus enneaspermus (L.) F.Muell.	Violaceae
595	Hydnocarpus alpina Wight	Achariaceae
596	Hydnocarpus macrocarpa Warb.	Achariaceae
597	Hydnocarpus pentandrus (BuchHam.) Oken	Achariaceae

598	Hydrilla verticillata (L.f.) Royle	Hydrocharitaceae
599	<i>Hydrocotyle javanica</i> Thunb.	Araliaceae
600	Hydrocotyle sibthorpioides Lam.	Araliaceae
601	Hydrolea zeylanica (L.) Vahl	Hydroleaceae
602	Hygrophila auriculata (Schumach.) Heine	Acanthaceae
603	Hygrophila ringens (L.) R. Br. ex Spreng.	Acanthaceae
604	Hygrophila ringens var. ringens	Acanthaceae
605	Hymenodictyon obovatum Wall.	Rubiaceae
606	Hymenodictyon orixense (Roxb.) Mabb.	Rubiaceae
607	Hypericum humifusum L.	Hypericaceae
608	Hypericum japonicum Thunb.	Hypericaceae
609	Hypericum mysurense Wall. ex Wight & Arn.	Hypericaceae
610	Hypolytrum nemorum (Vahl) Spreng.	Cyperaceae
611	Hypoxis aurea Lour.	Hypoxidaceae
612	Hyptis capitata Jacq.	Lamiaceae
613	Hyptis suaveolens (L.) Poit.	Lamiaceae
614	Ichnocarpus frutescens (L.) W.T.Aiton	Apocynaceae
615	Ilex wightiana Wall. ex Wight	Aquifoliaceae
616	Ilex denticulata Wall. ex Wight	Aquifoliaceae
617	Impatiens balsamina L.	Balsaminaceae
618	Indigofera astragalina DC.	Leguminosae
619	Indigofera cassioides DC.	Leguminosae
620	Indigofera galegoides DC.	Leguminosae
621	Indigofera hirsuta L.	Leguminosae
622	Indigofera linnaei Ali	Leguminosae
623	Indigofera tinctoria L.	Leguminosae
624	Ipomoea alba L.	Convolvulaceae
625	Ipomoea batatas (L.) Lam.	Convolvulaceae
626	Ipomoea cairica (L.) Sweet	Convolvulaceae
627	Ipomoea eriocarpa R. Br.	Convolvulaceae
628	Ipomoea hederifolia L.	Convolvulaceae
629	Ipomoea mauritiana Jacq.	Convolvulaceae
630	Ipomoea nil (L.) Roth	Convolvulaceae
631	Ipomoea obscura (L.) Ker Gawl.	Convolvulaceae
632	Ipomoea pes-tigridis L.	Convolvulaceae
633	Ipomoea quamoclit L.	Convolvulaceae
634	Ipomoea staphylina Roem. & Schult.	Convolvulaceae
635	Ipomoea turbinata Lag.	Convolvulaceae
636	Isachne globosa (Thunb.) Kuntze	Poaceae
637	Isodon nilgherricus (Benth.) H.Hara	Lamiaceae
638	Ixora coccinea L.	Rubiaceae
639	Ixora cuneifolia Roxb.	Rubiaceae
640	Ixora nigricans R.Br. ex Wight & Arn.	Rubiaceae

641	<i>Ixora notoniana</i> Wall. ex G.Don	Rubiaceae
642	Ixora pavetta Andr.	Rubiaceae
643	Jasminum angustifolium (L.) Willd.	Oleaceae
644	Jasminum auriculatum Vahl	Oleaceae
645	Jasminum azoricum L.	Oleaceae
646	Jasminum bignoniaceum Wall. & G.Don	Oleaceae
647	Jasminum calophyllum Wall. & G.Don	Oleaceae
648	Jasminum cuspidatum Rottl. & Willd.	Oleaceae
649	Jasminum grandiflorum L.	Oleaceae
650	Jasminum multiflorum (Burm.f.) Andrews	Oleaceae
651	Jasminum sambac (L.) Aiton	Oleaceae
652	Jasminum trichotomum B.Heyne ex Roth	Oleaceae
653	Justicia adhatoda L.	Acanthaceae
654	Justicia betonica L.	Acanthaceae
655	Justicia gendarussa Burm.f.	Acanthaceae
656	Justicia procumbens L.	Acanthaceae
657	Justicia prostrata Gamble	Acanthaceae
658	Justicia tranquebariensis L.f.	Acanthaceae
659	Kaempferia galanga L.	Zingiberaceae
660	Kamettia caryophyllata (Roxb.) Nicolson & Suresh	Apocynaceae
661	Kleinia grandiflora (wallich ex DC.) N.Rani	Asteraceae
662	Knoxia sumatrensis (Retz.) DC.	Rubiaceae
663	Kopsia fruticosa (Roxb.) A.DC.	Apocynaceae
664	<i>Kyllinga squamulata</i> Vahl	Cyperaceae
665	Kyllinga brevifolia Rottb.	Cyperaceae
666	<i>Kyllinga nemoralis</i> (J.R.Forst. & G.Forst.) Dandy ex Hutch. & Dalziel	Cyperaceae
667	Lablab purpureus (L.) Sweet	Leguminosae
668	Lagenandra ovata (L.) Thwaites	Araceae
669	Lagenandra toxicaria Dalzell	Araceae
670	Lagenaria siceraria (Molina) Standl.	Cucurbitaceae
671	Lagerstroemia indica L.	Lythraceae
672	Lagerstroemia microcarpa Wight	Lythraceae
673	Lagerstroemia speciosa (L.) Pers.	Lythraceae
674	Laggera crispata (Vahl) Hepper & J.R.I.Wood	Asteraceae
675	Lannea coromandelica (Houtt.) Merr.	Anacardiaceae
676	Lantana camara L.	Verbenaceae
677	Laportea interrupta (L.) Chew	Urticaceae
678	Launaea acaulis (Roxb.) Babc. ex Kerr	Asteraceae
679	Lawsonia inermis L.	Lythraceae
680	Leea guineensis G. Don	Vitaceae
681	Leea indica (Burm. f.) Merr.	Vitaceae
682	<i>Leea macrophylla</i> Roxb. ex Hornem.	Vitaceae

683	Leonotis nepetifolia (L.) R.Br.	Lamiaceae
684	Lepidagathis incurva BuchHam. ex D. Don	Acanthaceae
685	Lepidagathis scariosa Nees	Acanthaceae
686	Lepidium didymum L.	Brassicaceae
687	Leptadenia reticulata (Retz.) Wight & Arn.	Apocynaceae
688	Leucas decemdentata (Willd.) Sm.	Lamiaceae
689	Leucas lavandulaefolia Rees	Lamiaceae
690	Leucas martinicensis (Jacq.) R.Br.	Lamiaceae
691	Leucas urticifolia (Vahl) Sm.	Lamiaceae
692	Leucas zeylanica (L.) W.T.Aiton	Lamiaceae
- 693	Ligustrum perrottetii A.DC.	Oleaceae
694	Ligustrum robustum (Roxb.) Blume	Oleaceae
695	Limnophila aromatica (Lam.) Merr.	Plantaginaceae
696	Limnophila indica (L.) Druce	Plantaginaceae
697	Limonia acidissima Groff	Rutaceae
698	Lindernia anagallis (Burm.f.) Pennell	Linderniaceae
699	Lindernia antipoda (L.) Alston	Linderniaceae
700	Lindernia caespitosa (Blume) Panigrahi	Linderniaceae
701	Lindernia ciliata (Colsm.) Pennell	Linderniaceae
702	Lindernia crustacea (L.) F.Muell.	Linderniaceae
703	Lindernia hyssopoides (L.) Haines	Linderniaceae
704	Lindernia oppositifolia (L.) Mukerjee	Linderniaceae
705	Lindernia rotundifolia (L.) Alston	Linderniaceae
706	Lindernia ruellioides (Colsm.) Pennell	Linderniaceae
707	Lipocarpha squarrosa (L.) Goetgh.	Cyperaceae
708	Lippia javanica (Burm.f.) Spreng.	Verbenaceae
709	Litchi chinensis Sonn.	Sapindaceae
710	Litsea coriacea Hook.f.	Lauraceae
711	Litsea quinqueflora (Dennst.) Suresh	Lauraceae
712	Litsea stocksii Hook.f.	Lauraceae
712	Luseu stocksti filokiti. Lobelia nicotianifolia Roth ex Schult.	Campanulaceae
71 <u>3</u> 714	Lobelia alsinoides Lam.	Campanulaceae
	Lobelia leschenaultiana (C.Presl) Skottsb.	Campanulaceae
71 <u>5</u> 716	Loeseneriella obtusifolia (Roxb.) A.C.Sm.	Celastraceae
	Loium temulentum L.	Poaceae
717 718	Luffa acutangula (L.) Roxb.	Cucurbitaceae
		Cucurbitaceae
719	Luffa cylindrica (L.) M.Roem.	
720	Lycianthes laevis (Dunal) Bitter	Solanaceae
721	Lycianthes denticulata (Blume) Bitter	Solanaceae
722	Lycopersicon esculentum Mill.	Solanaceae
723	Madhuca longifolia (J.Koenig ex L.) J.F.Macbr. i	Sapotaceae
724	Madhuca neriifolia (Moon) H.J.Lam	Sapotaceae
725	Maesa indica (Roxb.) A. DC.	Primulaceae

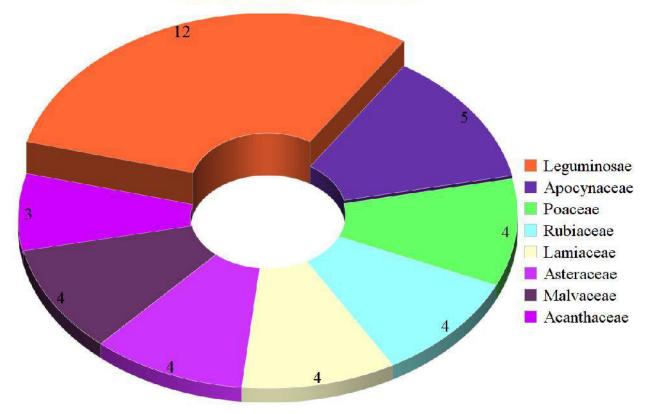
726	Magnolia champaca (L.) Baill. ex Pierre	Magnoliaceae
727	Magnolia nilagirica (Zenker) Figlar	Magnoliaceae
728	Malvastrum coromandelianum (L.) Garcke	Malvaceae
729	Mangifera indica L.	Anacardiaceae
730	Manilkara hexandra (Roxb.) Dubard	Sapotaceae
731	Manilkara zapota (L.) P.Royen	Sapotaceae
732	Marsdenia tirunelvelica A.N.Henry & Subr.	Apocynaceae
733	Mastixia arborea (Wight) C.B.Clarke	Cornaceae
734	Mazus pumilus (Burm.f.) Steenis	Phrymaceae
735	Melastoma malabathricum L.	Melastomataceae
736	Melia azedarach L.	Meliaceae
737	Meliosma simplicifolia (Roxb.) Walp.	Sabiaceae
738	Melochia corchorifolia L.	Malvaceae
739	Memecylon angustifolium Wight	Melastomataceae
740	Memecylon talbotianum Brandis	Melastomataceae
741	Memecylon umbellatum Burm. f.	Melastomataceae
742	Merremia hederacea (Burm. f.) Hallier f.	Convolvulaceae
743	Merremia tridentata (L.) Hallier f.	Convolvulaceae
744	Merremia umbellata (L.) Hallier f.	Convolvulaceae
745	Merremia vitifolia (Burm. f.) Hallier f.	Convolvulaceae
746	Mesua ferrea L.	Calophyllaceae
747	Micromeria biflora (BuchHam. ex D.Don) Benth.	Lamiaceae
748	Microstegium ciliatum (Trin.) A.Camus	Poaceae
749	Mikania micrantha Kunth	Asteraceae
750	Miliusa tomentosa (Roxb.) J.Sinclair	Annonaceae
751	Millingtonia hortensis L.f.	Bignoniaceae
752	Mimosa pudica var. unijuga (Duchass. & Walp.) Griseb.	Leguminosae
753	Mimusops elengi L.	Sapotaceae
754	Mirabilis jalapa L.	Nyctaginaceae
755	Mitracarpus hirtus (L.) DC.	Rubiaceae
756	Mitragyna parvifolia (Roxb.) Korth.	Rubiaceae
757	Mollugo nudicaulis Lam.	Molluginaceae
758	Mollugo pentaphylla L.	Molluginaceae
759	Momordica charantia L.	Cucurbitaceae
760	Momordica dioica Roxb. ex Willd.	Cucurbitaceae
761	Monochoria vaginalis (Burm.f.) C.Presl	Pontederiaceae
762	Morinda pubescens Sm.	Rubiaceae
763	Morinda umbellata L.	Rubiaceae
764	Moringa pterygosperma Gaertn.	Moringaceae
765	Morus alba L.	Moraceae
766	Mucuna monosperma Wight	Leguminosae
767	Mucuna pruriens (L.) DC.	Leguminosae
768	Mukia maderaspatana (L.) M.Roem.	Cucurbitaceae

769	Mundulea sericea (Willd.) A.Chev.	Leguminosae
770	Munronia pinnata (Wall.) W.Theob.	Meliaceae
771	Murdannia japonica (Thunb.) Faden	Commelinaceae
772	Murdannia nudiflora (L.) Brenan	Commelinaceae
773	Murraya koenigii (L.) Spreng.	Rutaceae
774	Murraya paniculata (L.) Jack	Rutaceae
775	Musa paradisiaca L.	Musaceae
776	Mussaenda frondosa L.	Rubiaceae
777	Myristica fragrans Houtt.	Myristicaceae
778	Myristica malabarica Lam.	Myristicaceae
779	Myxopyrum smilacifolium (Wall.) Blume	Oleaceae
780	Naravelia zeylanica (L.) DC.	Ranunculaceae
781	Naregamia alata Wight & Arn.	Meliaceae
782	Naringi crenulata (Roxb.) Nicolson	Rutaceae
783	Neolamarckia cadamba (Roxb.) Bosser	Rubiaceae
784	Neolitsea scrobiculata Gamble	Lauraceae
785	Nerium oleander L.	Apocynaceae
786	Nervilia plicata (Andrews) Schltr.	Orchidaceae
787	Nicandra physalodes (L.) Gaertn.	Solanaceae
788	Nicotiana tabacum L.	Solanaceae
789	Nilgirianthus wightianus (Nees) Bremek.	Acanthaceae
790	Nothopegia colebrookiana (Wight) Blume	Anacardiaceae
791	Nothosaerva brachiata (L.) Wight	Amaranthaceae
792	Nymphoides hydrophylla (Lour.) Kuntze	Menyanthaceae
793	Nymphoides indica (L.) Kuntze	Menyanthaceae
794	Ocimum americanum L.	Lamiaceae
795	Ocimum basilicum L.	Lamiaceae
796	Ocimum gratissimum L.	Lamiaceae
797	Ocimum tenuiflorum L.	Lamiaceae
798	Oldenlandia auricularia (L.) K.Schum.	Rubiaceae
799	Oldenlandia brachypoda DC.	Rubiaceae
800	Oldenlandia corymbosa L.	Rubiaceae
801	Oldenlandia diffusa (Willd.) Roxb.	Rubiaceae
802	Oldenlandia herbacea (L.) Roxb.	Rubiaceae
803	Oldenlandia umbellata L.	Rubiaceae
804	Olea dioica Roxb.	Oleaceae
805	Ophiopogon intermedius D.Don	Asparagaceae
806	Ophiorrhiza mungos L.	Rubiaceae
807	Opuntia elatior Mill.	Cactaceae
808	Opuntia ficus-indica (L.) Mill.	Cactaceae
809	Opuntia stricta (Haw.) Haw.	Cactaceae
810	Oreocnide integrifolia (Gaudich.) Miq.	Urticaceae
811	Ormocarpum cochinchinense (Lour.) Merr.	Leguminosae

812	Ormosia travancorica Bedd.	Leguminosae
813	Oroxylum indicum (L.) Kurz	Bignoniaceae
814	Orthosiphon aristatus (Blume) Miq.	Lamiaceae
815	Orthosiphon thymiflorus (Roth) Sleesen	Lamiaceae
816	Oryza rufipogon Griff.	Poaceae
817	Oryza sativa L.	Poaceae
818	Osbeckia aspera Blume	Melastomataceae
819	Osbeckia zeylanica Steud. ex Naudin	Melastomataceae
820	Osyris lanceolata Hochst. & Steud.	Santalaceae
821	Oxalis corniculata L.	Oxalidaceae
822	Pajanelia longifolia (Willd.) K.Schum.	Bignoniaceae
823	Palaquium ellipticum (Dalzell) Baill.	Sapotaceae
824	Pancratium triflorum Roxb.	Amaryllidaceae
825	Pandanus thwaitesii Martelli	Pandanaceae
826	Panicum antidotale Retz.	Poaceae
827	Panicum maximum Jacq.	Poaceae
828	Panicum repens L.	Poaceae
829	Panicum sumatrense Roth	Poaceae
830	Paracalyx scariosus (Roxb.) Ali	Leguminosae
831	Paramignya monophylla Wight	Rutaceae
832	Parkinsonia aculeata L.	Leguminosae
833	Parochetus communis D.Don	Leguminosae
834	Parthenium hysterophorus L.	Asteraceae
835	Paspalum distichum L.	Poaceae
836	Paspalum scrobiculatum L.	Poaceae
837	Passiflora edulis Sims	Passifloraceae
838	Passiflora foetida L.	Passifloraceae
839	Pavetta tomentosa Roxb. ex Sm.	Rubiaceae
840	Pedalium murex L.	Pedaliaceae
841	Peltophorum pterocarpum (DC.) K.Heyne	Leguminosae
842	Pentanema indicum (L.) Ling	Asteraceae
843	Peperomia pellucida (L.) Kunth	Piperaceae
844	Peperomia tetraphylla (G.Forst.) Hook. & Arn.	Piperaceae
845	Pergularia daemia (Forssk.) Chiov.	Apocynaceae
846	Perotis indica (L.) Kuntze	Poaceae
847	Persea macrantha (Nees) Kosterm.	Lauraceae
848	Petrea volubilis L.	Verbenaceae
849	Phaulopsis imbricata (Forssk.) Sweet	Acanthaceae
850	Phoebe wightii Meisn.	Lauraceae
851	Phoenix loureiroi Kunth	Arecaceae
852	Pholidota imbricata Lindl.	Orchidaceae
853	Phragmites karka (Retz.) Trin. ex Steud.	Poaceae
854	Physalis angulata L.	Solanaceae

855	Physalis peruviana L.	Solanaceae
856	Pilea microphylla (L.) Liebm.	Urticaceae
857	Pimpinella heyneana (DC.) Benth.	Apiaceae
858	Pimpinella pulneyensis Gamble	Apiaceae
859	Piper argyrophyllum Miq.	Piperaceae
860	Piper barberi Gamble	Piperaceae
861	Piper betle L.	Piperaceae
862	Piper longum L.	Piperaceae
863	Piper mullesua BuchHam. ex D. Don	Piperaceae
864	Piper nigrum L.	Piperaceae
865	Piper trichostachyon (Miq.) C. DC.	Piperaceae
866	Piper umbellatum L.	Piperaceae
867	Pisonia aculeata L.	Nyctaginaceae
868	Pistia stratiotes L.	Araceae
869	Pittosporum napaulense (DC.) Rehder & E.H. Wilson	Pittosporaceae
870	Pittosporum neelgherrense Wight & Arn.	Pittosporaceae
871	Pittosporum tetraspermum Wight & Arn.	Pittosporaceae
872	Platostoma hispidum (L.) A.J.Paton	Lamiaceae
873	Pleiospermium alatum (Wight & Arn.) Swingle	Rutaceae
874	Pleurostylia opposita (Wall.) Alston	Celastraceae
875	Plumbago indica L.	Plumbaginaceae
876	Plumbago zeylanica L.	Plumbaginaceae
877	Plumeria alba L.	Apocynaceae
878	Plumeria rubra L.	Apocynaceae
879	Poeciloneuron indicum Bedd.	Calophyllaceae
880	Pogonatherum crinitum (Thunb.) Kunth	Poaceae
881	Pogostemon auricularius (L.) Hassk.	Lamiaceae
882	Pogostemon benghalensis (Burm.f.) Kuntze	Lamiaceae
883	Pogostemon heyneanus Benth.	Lamiaceae
884	Pogostemon paniculatus (Willd.) Benth.	Lamiaceae
885	Pogostemon pubescens Benth.	Lamiaceae
886	Pogostemon purpurascens Dalzell	Lamiaceae
887	Polyalthia cerasoides (Roxb.) Bedd.	Annonaceae
888	Polyalthia coffeoides (Thwaites) Hook.f. & Thomson	Annonaceae
889	Polyalthia fragrans (Dalzell) Benth. & Hook. f.	Annonaceae
890	Polyalthia longifolia (Sonn.) Thwaites	Annonaceae
891	Polycarpaea corymbosa (L.) Lam.	Caryophyllaceae
892	Polycarpon prostratum (Forssk.) Asch. & Schweinf.	Caryophyllaceae
893	Polygala arvensis Willd.	Polygalaceae
894	Polygala chinensis L.	Polygalaceae
895	Polygala elongata Klein ex Willd.	Polygalaceae
896	Polygala sphenoptera Fresen.	Polygalaceae
897	Polygonum plebeium R.Br.	Polygalaceae

898	Pongamia pinnata (L.) Pierre	Leguminosae
899	Portulaca grandiflora Hook.	Portulacaceae
900	Portulaca oleracea L.	Portulacaceae
901	Portulaca pilosa L.	Portulacaceae
902	Portulaca quadrifida L.	Portulacaceae
903	Pothos scandens L.	Araceae
904	Pouzolzia bennettiana Wight	Urticaceae
905	Pouzolzia zeylanica (L.) Benn.	Urticaceae
906	Premna coriacea C.B.Clarke	Lamiaceae
907	Premna herbacea Roxb.	Lamiaceae
908	Premna mollissima Roth	Lamiaceae
909	Premna serratifolia L.	Lamiaceae
910	Premna tomentosa Willd.	Lamiaceae
911	Priva cordifolia (L.f.) Druce	Verbenaceae
912	Prunus ceylanica (Wight) Miq.	Rosaceae
913	Prunus persica (L.) Batsch	Rosaceae
914	Pseudarthria viscida (L.) Wight & Arn.	Leguminosae
915	Psidium guajava L.	Myrtaceae
916	Psychotria glandulosa (Dennst.) Suresh	Rubiaceae
917	Pterocarpus marsupium Roxb.	Leguminosae
918	Pterolobium hexapetalum (Roth) Santapau & Wagh	Leguminosae
919	Pterospermum diversifolium Blume	Malvaceae
920	Pterospermum rubiginosum B.Heyne ex Wall.	Malvaceae
921	Pueraria phaseoloides (Roxb.) Benth.	Leguminosae
922	Pueraria tuberosa (Willd.) DC.	Leguminosae
923	Punica granatum L.	Lythraceae
924	Pupalia lappacea (L.) Juss.	Amaranthaceae
925	Putranjiva roxburghii Wall.	Putranjivaceae
926	Pycnospora lutescens (Poir.) Schindl.	Leguminosae
927	Radermachera xylocarpa (Roxb.) Roxb. ex K.Schum.	Bignoniaceae
928	Rauvolfia micrantha Hook.f.	Apocynaceae
929	Rauvolfia serpentina (L.) Benth. ex Kurz	Apocynaceae
930	Rauvolfia tetraphylla L.	Apocynaceae
931	Reissantia indica (Willd.) N.Hallé	Celastraceae
932	Remusatia vivipara (Roxb.) Schott	Araceae
933	Rhaphidophora pertusa (Roxb.) Schott	Araceae
934	Rhinacanthus nasutus (L.) Kurz	Acanthaceae
935	Rhododendron arboreum Sm.	Ericaceae
936	Rhodomyrtus tomentosa (Aiton) Hassk.	Myrtaceae
937	Rhynchostylis retusa (L.) Blume	Orchidaceae
938	Richardia scabra L.	Rubiaceae
939	Rivea ornata Choisy	Convolvulaceae
940	Rotala indica (Willd.) Koehne	Lythraceae


941	Rotheca serrata (L.) Steane & Mabb.	Lamiaceae
942	Rothia indica (L.) Druce	Leguminosae
943	Rotula aquatica Lour.	Boraginaceae
944	Rourea minor (Gaertn.) Alston	Connaraceae
945	Rubia cordifolia L.	Rubiaceae
946	Rubus ellipticus Sm.	Rubiaceae
947	Rubus niveus Thunb.	Rosaceae
948	Rubus rugosus Sm.	Rosaceae
949	Ruellia patula Jacq.	Acanthaceae
950	Rumex nepalensis Spreng.	Polygonaceae
951	Rungia pectinata (L.) Nees	Acanthaceae
952	Saccharum officinarum L.	Poaceae
953	Saccharum spontaneum L.	Poaceae
954	Sacciolepis indica (L.) Chase	Poaceae
955	Sacciolepis interrupta (Willd.) Stapf	Poaceae
956	Sagina saginoides (L.) H.Karst.	Caryophyllaceae
957	Salacia fruticosa Wall.	Celastraceae
958	Salacia macrosperma Wight	Celastraceae
959	Salacia oblonga Wall.	Celastraceae
960	Salvia officinalis L.	Lamiaceae
961	Santalum album L.	Santalaceae
962	Sapindus emarginatus Vahl	Sapindaceae
963	Sapindus trifoliatus L.	Sapindaceae
964	Saraca asoca (Roxb.) Willd.	Leguminosae
965	Sarcostemma acidum (Roxb.) Voigt	Apocynaceae
966	Sarcostemma viminale subsp. brunonianum (Wight & Arn.) P.I. Forst.	Apocynaceae
967	Satyrium nepalense D.Don	Orchidaceae
968	Schefflera stellata (Gaertn.) Baill.	Araliaceae
969	Schefflera venulosa (Wight & Arn.) Harms	Araliaceae
970	Schleichera oleosa (Lour.) Merr.	Sapindaceae
971	Scleria levis Retz.	Cyperaceae
972	Scleria lithosperma (L.) Sw.	Cyperaceae
973	Scleria terrestris (L.) Fassett	Cyperaceae
974	Scleropyrum pentandrum (Dennst.) Mabb.	Santalaceae
975	Scolopia crenata Clos	Salicaceae
976	Scoparia dulcis L.	Plantaginaceae
977	Scurrula parasitica L.	Loranthaceae
978	Secamone emetica (Retz.) R. Br. ex Schult.	Apocynaceae
979	Semecarpus travancorica Bedd.	Anacardiaceae
980	Senna hirsuta (L.) H.S.Irwin & Barneby	Leguminosae
981	Senna occidentalis (L.) Link	Leguminosae
982	Senna siamea (Lam.) H.S.Irwin & Barneby	Leguminosae

983	Senna tora (L.) Roxb.	Leguminosae
984	Sesamum indicum L.	Pedaliaceae
985	Sesbania grandiflora (L.) Pers.	Leguminosae
986	Setaria verticillata (L.) P.Beauv.	Poaceae
987	Sigesbeckia orientalis L.	Asteraceae
988	Smilax aspera L.	Smilacaceae
989	Smilax perfoliata Lour.	Smilacaceae
990	Smilax wightii A.DC.	Smilacaceae
991	Smilax zeylanica L.	Smilacaceae
992	Solanum americanum Mill.	Solanaceae
993	Solanum capsicoides All.	Solanaceae
994	Solanum erianthum D. Don	Solanaceae
995	Solanum giganteum Jacq.	Solanaceae
996	Solanum lasiocarpum Dunal	Solanaceae
997	Solanum melongena L.	Solanaceae
998	Solanum pubescens Willd.	Solanaceae
999	Solanum seaforthianum Andrews	Solanaceae
1000	Solanum sisymbriifolium Lam.	Solanaceae
1001	Solanum torvum Sw.	Solanaceae
1002	Solanum trilobatum L.	Solanaceae
1003	Solanum violaceum Ortega	Solanaceae
1004	Solena amplexicaulis (Lam.) Gandhi	Cucurbitaceae
1005	Sonchus oleraceus (L.) L.	Asteraceae
1006	Sonchus wightianus DC.	Asteraceae
1007	Sonerila rheedei Wall.	Melastomataceae
1008	Sopubia delphinifolia G.Don	Orobanchaceae
1009	Sorghum bicolor (L.) Moench	Poaceae
1010	Sorghum halepense (L.) Pers.	Poaceae
1011	Spatholobus parviflorus (DC.) Kuntze	Leguminosae
1012	Spergula arvensis L.	Caryophyllaceae
1013	Spermacoce articularis L.f.	Rubiaceae
1014	Sphaeranthus indicus L.	Asteraceae
1015	Sphagneticola calendulacea (L.) Prusk	Asteraceae
1016	Sphenoclea zeylanica Gaertn.	Sphenocleaceae
1017	Spondias pinnata (L. f.) Kurz	Anacardiaceae
1018	Stachytarpheta jamaicensis (L.) Vahl	Verbenaceae
1019	Stachytarpheta urticifolia (Salisb.) Sims	Verbenaceae
1020	Stellaria media (L.) Vill.	Caryophyllaceae
1021	Stephania japonica (Thunb.) Miers	Menispermaceae
1022	Stephania wightii Dunn	Menispermaceae
1023	Sterculia foetida L.	Malvaceae
1024	Sterculia guttata Roxb. ex G.Don	Malvaceae
1025	Sterculia villosa Roxb.	Malvaceae

1026	Stictocardia tiliifolia (Desr.) Hallier f.	Convolvulaceae
1027	Striga asiatica (L.) Kuntze	Orobanchaceae
1028	Striga gesnerioides (Willd.) Vatke	Orobanchaceae
1029	Strobilanthes ciliata Nees	Acanthaceae
1030	Strobilanthes consanguineus Clarke	Acanthaceae
1031	Strobilanthes heyneanus Nees	Acanthaceae
1032	Strychnos potatorum L.f.	Loganiaceae
1033	Stylosanthes fruticosa (Retz.) Alston	Leguminosae
1034	Swertia corymbosa Wight ex Griseb.	Gentianaceae
1035	Swertia minor Knobl.	Gentianaceae
1036	Swietenia macrophylla King	Meliaceae
1037	Swietenia mahogani L.	Meliaceae
1038	Symplocos cochinchinensis var. laurina (Retz.) Noot.	Symplocaceae
1039	Symplocos monantha Wight	Symplocaceae
1040	Symplocos racemosa Roxb.	Symplocaceae
1041	Synedrella nodiflora (L.) Gaertn.	Asteraceae
1042	Syzygium aromaticum (L.) Merr. & L.M.Perry	Myrtaceae
1043	Syzygium caryophyllatum (L.) Alston	Myrtaceae
1044	Syzygium cumini (L.) Skeels	Myrtaceae
1045	Syzygium hemisphericum (Wight) Alston	Myrtaceae
1046	Syzygium jambos (L.) Alston	Myrtaceae
1047	Syzygium salicifolium (Wight) J.Graham	Myrtaceae
1048	Tabernaemontana alternifolia L.	Apocynaceae
1049	Tabernaemontana divaricata (L.) R.Br. ex Roem. & Schult.	Apocynaceae
1050	Tadehagi triquetrum (L.) H.Ohashi	Leguminosae
1051	Tamarindus indica L.	Leguminosae
1052	Tarenna asiatica (L.) Kuntze ex K.Schum.	Rubiaceae
1053	Taxillus tomentosus Tiegh.	Loranthaceae
1054	Tecoma stans (L.) Juss. ex Kunth	Bignoniaceae
1055	Tectona grandis L.f.	Lamiaceae
1056	Tephrosia candida (Roxb.) DC.	Leguminosae
1057	Tephrosia purpurea (L.) Pers.	Leguminosae
1058	Tephrosia tinctoria Pers.	Leguminosae
1059	Tephrosia villosa (L.) Pers.	Leguminosae
1060	Teramnus labialis (L.f.) Spreng.	Leguminosae
1061	Terminalia paniculata Roth	Combretaceae
1062	Terminalia travancorensis Wight & Arn.	Combretaceae
1063	<i>Terminalia bellirica</i> (Gaertn.) Roxb.	Combretaceae
1064	Terminalia catappa L.	Combretaceae
1065	Terminalia chebula Retz.	Combretaceae
1066	Tetracera akara Merr.	Dilleniaceae
1067	Tetrameles nudiflora R. Br.	Tetramelaceae
1068	Tetrastigma leucostaphylum (Dennst.) Alston	Vitaceae

1069	Themeda triandra Forssk.	Poaceae
1070	Theriophonum infaustum N.E.Br.	Araceae
1071	Thottea siliquosa (Lam.) Ding Hou	Aristolochiaceae
1072	Thunbergia alata Bojer ex Sims	Acanthaceae
1073	Thunbergia fragrans Roxb.	Acanthaceae
1074	<i>Thunbergia grandiflora</i> (Roxb. ex Rottl.) Roxb.	Acanthaceae
1075	Tiliacora racemosa Colebr.	Menispermaceae
1076	Tinospora sinensis (Lour.) Merr.	Menispermaceae
1077	Tithonia diversifolia (Hemsl.) A.Gray	Asteraceae
1078	Toddalia asiatica (L.) Lam.	Rutaceae
1079	Toona ciliata M.Roem.	Meliaceae
1080	Torenia bicolor Dalzell	Linderniaceae
1081	Torenia travancorica Gamble	Linderniaceae
1082	Trema orientalis (L.) Blume	Cannabaceae
1083	Trichodesma indicum (L.) Lehm.	Boraginaceae
1084	Trichodesma zeylanicum (Burm.f.) R.Br.	Boraginaceae
1085	Trichopodium zeylanicum (Gaertn.) Thwaites	Leguminosae
1086	Trichosanthes anaimalaiensis Bedd.	Cucurbitaceae
1087	Trichosanthes cucumerina L.	Cucurbitaceae
1088	Trichosanthes lobata Roxb.	Cucurbitaceae
1089	Trichosanthes nervifolia L.	Cucurbitaceae
1090	Trichosanthes tricuspidata Lour.	Cucurbitaceae
1091	Tridax procumbens (L.) L.	Asteraceae
1092	Triumfetta annua L.	Malvaceae
1093	Triumfetta rhomboidea Jacq.	Malvaceae
1094	Turpinia cochinchinensis (Lour.) Merr.	Staphyleaceae
1095	Turraea pubescens Hell.	Meliaceae
1096	<i>Tylophora fasciculata</i> BuchHam. ex Wight	Apocynaceae
1097	Tylophora flexuosa R. Br.	Apocynaceae
1098	<i>Tylophora indica</i> (Burm. f.) Merr.	Apocynaceae
1099	Typha domingensis Pers.	Typhaceae
1100	Uraria rufescens (DC.) Schindl.	Leguminosae
1101	Utricularia reticulata Sm.	Lentibulariaceae
1102	Uvaria hookeri King	Annonaceae
1103	Uvaria narum (Dunal) Blume	Annonaceae
1104	Vanda tessellata (Roxb.) Hook. ex G.Don	Orchidaceae
1105	Vanda testacea (Lindl.) Rchb.f.	Orchidaceae
1106	Ventilago maderaspatana Gaertn.	Rhamnaceae
1107	Vepris bilocularis Engl.	Rutaceae
1108	Vernonia arborea BuchHam.	Asteraceae
1109	Vigna grahamiana (Wight & Arn.) Verdc.	Leguminosae
1110	Vigna mungo (L.) Hepper	Leguminosae
1111	Vigna radiata (L.) R.Wilczek	Leguminosae

1112	Vigna trilobata (L.) Verdc.	Leguminosae
1113	Vigna umbellata (Thunb.) Ohwi & H.Ohashi	Leguminosae
1114	Vigna unguiculata (L.) Walp.	Leguminosae
1115	Vigna vexillata (L.) A.Rich.	Leguminosae
1116	<i>Viscum articulatum</i> Burm. f.	Santalaceae
1117	Viscum cruciatum Sieber ex Boiss.	Santalaceae
1118	Viscum monoicum Roxb. ex DC.	Santalaceae
1119	Vitex altissima L.f.	Lamiaceae
1120	Vitex leucoxylon L.f.	Lamiaceae
1121	Vitex negundo L.	Lamiaceae
1122	Vitis vinifera L.	Vitaceae
1123	Volkameria inermis L.	Lamiaceae
1124	Wahlenbergia marginata (Thunb.) A.DC.	Campanulaceae
1125	Walsura trifoliolata (A.Juss.) Harms	Meliaceae
1126	Waltheria indica L.	Malvaceae
1127	Wrightia arborea (Dennst.) Mabb.	Apocynaceae
1128	Wrightia tinctoria R.Br.	Apocynaceae
1129	Xanthium strumarium L.	Asteraceae
1130	Xantolis tomentosa (Roxb.) Raf.	Sapotaceae
1131	<i>Xylia xylocarpa</i> (Roxb.) Taub.	Leguminosae
1132	Xyris pauciflora Willd.	Xyridaceae
1133	Youngia japonica (L.) DC.	Asteraceae
1134	Zanonia indica L.	Cucurbitaceae
1135	Zanthoxylum ovalifolium Tutcher	Rutaceae
1136	Zanthoxylum rhetsa DC.	Rutaceae
1137	Zanthoxylum tetraspermum Wight & Arn.	Rutaceae
1138	Zehneria maysorensis Arn.	Cucurbitaceae
1139	Zehneria scabra Sond.	Cucurbitaceae
1140	Zehneria thwaitesii (Schweinf.) C.Jeffrey	Cucurbitaceae
1141	Zeuxine longilabris (Lindl.) Trimen	Orchidaceae
1142	Zingiber cernuum Dalzell	Zingiberaceae
1143	Zingiber officinale Roscoe	Zingiberaceae
1144	Zingiber zerumbet (L.) Roscoe ex Sm.	Zingiberaceae
1145	Ziziphus jujuba Mill.	Rhamnaceae
1146	Ziziphus oenopolia (L.) Mill.	Rhamnaceae
1147	Ziziphus xylopyrus (Retz.) Willd.	Rhamnaceae
1148	Zornia gibbosa Span.	Leguminosae

Major families of medicinal plants

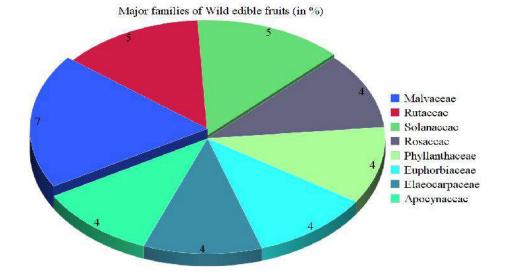

S. No.	Species name	Family	Local name	Location
1	Acronychia pedunculata (L.) Miq.	Rutaceae	Kattuorange, Kambili	Munnar
2	Aerva lanata (L.) Juss.	Amaranthaceae	Cherula	Chullippetty
3	Alangium salviifolium (L.f.) Wangerin	Cornaceae	Kilikuthippazham, Ottangudi	Kolanikavu (Thodupuzha)
4	Antidesma montanum Blume	Phyllanthaceae	Nilamvetti, Kattupulinchi	Adimali
5	Artocarpus lacucha BuchHam.	Moraceae	Kurangu pilavu	Bhoothathankettu
6	Asparagus racemosus Willd.	Asparagaceae	Shathavari	Kanthalloor, Marayur
7	Atalantia monophylla DC.	Rutaceae	Kuruthan	Marayur, Chinnar
8	Azadirachta indica A.Juss.	Meliaceae	Veppu	Chinnar
9	Baccaurea courtallensis (Wight) Müll.Arg.	Phyllanthaceae	Mootti, Mootippuli	Adimali, Neriyamangalam
10	Bridelia stipularis (L.) Blume	Phyllanthaceae	Thondan valli	Adimali, Irumbupalam
11	Capparis sepiaria L.	Capparaceae	-	Marayur, Chinnar
12	Capparis zeylanica L.	Capparaceae	Athanda	Churulipetty, Chinnar
13	Caralluma umbellata Haw.	Apocynaceae	Kathal, Ekidi	Chullippetty, Chinnar
14	Carissa carandas L.	Apocynaceae	Kela, Kelavu, Mulli, Karimulli,	Chullippetty, Chinnar
15	Celastrus paniculatus Willd.	Celastraceae	Valuluva	Chinnar
16	Cereus pterogonus Lem.	Cactaceae	Chathurakolli	Chinnar
17	Cipadessa baccifera (Roth) Miq.	Meliaceae	Mainappazham, Thalethirukka	Munnar, Adimali
18	Cissus quadrangularis L.	Vitaceae	Changalamparanda	Chambakkad
19	Cleome gynandra L.	Cleomaceae	Kattukaduku	Peermade
20	Coccinia grandis (L.) Voigt	Cucurbitaceae	Koval,	Chinnar
21	Crotalaria grahamiana Wight & Arn.	Leguminosae	Chalanga	Chinnar
22	Croton malabaricus Bedd.	Euphorbiaceae	Thavittu pulavu	Adimali
23	Debregeasia longifolia (Burm.f.) Wedd.	Urticaceae	Neerinch	Munnar, Marayur
24	<i>Diospyros montana</i> Roxb.	Ebenaceae	Vakkana	Chinnar, Marayur
25	Diplocyclos palmatus (L.) C.Jeffrey	Cucurbitaceae	-	Marayur, Kuthukal
26	Elaeagnus conferta Roxb.	Elaeagnaceae	Kurangupazham, Kattumunthiri, Bhasmadhooli	Munnar, Devikulam, Vagamaurai, Kanthalloor

Table 5. List of wild edible fruits found in the HRML study area

S. No.	Species name	Family	Local name	Location
27	Elaeagnus indica Servett.	Elaeagnaceae	Kurangu rudraksham	Kanthalloor, Marayur
28	Elaeocarpus hygrophilus Kurz	Elaeocarpaceae	Kaippan kara, kelakotta	Adimali, Munnar, Marayur, Brindaran estate
29	Elaeocarpus munroii Mast.	Elaeocarpaceae	Kattukara	Devikulam, Munnar
30	Elaeocarpus serratus L.	Elaeocarpaceae	Kara	Adimali, Neriyamangalam, 6th stone, Munnar
31	Elaeocarpus tuberculatus Roxb.	Elaeocarpaceae	Rudraksham	Marayur, Kanthallor
32	Eleusine coracana (L.) Gaertn.	Poaceae	Keppa, Kuravu	Kuthukal
33	Embelia ribes Burm.f.	Primulaceae	Vizhal	Marayur
34	Entada rheedii Spreng.	Leguminosae	Paranda, Kakkumkalli, Thellikkodi	Adimali
35	Euonymus angulatus Wight	Celastraceae	-	Anamudi Motta
36	Ficus racemosa L.	Moraceae	Athi	Kanthalloor, Marayur
37	Firmiana simplex (L.) W.Wight	Malvaceae	Thondi	Chinnar, Marayur
38	<i>Garcinia gummi-gutta</i> (L.) Roxb.	Clusiaceae	-	Rajamala
39	Gardenia resinifera Roth	Rubiaceae	Kattupera, Kambimaram	Marayur, Chinnar
40	Gaultheria fragrantissima Wall.	Ericaceae	Colgate chedi	Munnar, Devikulam
41	Givotia moluccana (L.) Sreem.	Euphorbiaceae	-	Marayur, Chinnar
42	Glycosmis pentaphylla (Retz.) DC.	Rutaceae	Panal, panchi	Thodupuzha
43	<i>Gmelina arborea</i> Roxb.	Lamiaceae	Kumbil, Kumizhu	Marayur, Kanthlloor
44	<i>Gmelina asiatica</i> L.	Lamiaceae	Cherukumbil	Chinnar
45	Grewia damine Gaertn.	Malvaceae	Chathura kalla	Marayur, Chinnar
46	Grewia gamblei J.R.Drumm.	Malvaceae	Malankalla, Vivakukettum valli	Marayur, Chinnar
47	Grewia rothii DC.	Malvaceae	Kalla	Chinnar
48	Grewia serrulata DC.	Malvaceae	-	Adimali
49	Grewia villosa Willd.	Malvaceae	Tholkalla	Munnar, Chinnar
50	<i>Gymnema sylvestre</i> (Retz.) R.Br. ex Sm.	Apocynaceae	Chakkarakolli	Chinnar, Chambakkad
51	Heracleum candolleanum Gamble	Apiaceae	Chittelam, Vathamkolli	Devikulam
52	<i>Herissantia crispa</i> (L.) Brizicky	Malvaceae	Urikka	Chambakkaad

S. No.	Species name	Family	Local name	Location
53	Lantana camara L.	Verbenaceae	Chulli	Munnar
54	Maesa indica (Roxb.) A. DC.	Primulaceae	Kirithi	Rajamala, Munnar, Marayur
55	Mallotus philippensis (Lam.) Müll.Arg.	Euphorbiaceae	Thavittu	Marayur
56	Manilkara roxburghiana (Wight) Dubard	Sapotaceae	-	Chinnar
57	Mimusops elengi L.	Sapotaceae	Erinjil, Elanji	Marayur
58	<i>Murraya paniculata</i> (L.) Jack	Rutaceae	Kattukariveppu	Marayur, Chinnar, Mannavanshola
59	Nicandra physalodes (L.) Gaertn.	Solanaceae	-	Vattayar
60	Nothopegia beddomei Gamble	Anacardiaceae	-	Kolanikavu (Thodupuzha)
61	Olea dioica Roxb.	Oleaceae	Edana	Marayur
62	Opuntia elatior Mill.	Cactaceae	Pattanathumkalli	Chinnar
63	<i>Opuntia stricta</i> (Haw.) Haw.	Cactaceae	Kalli, Chuvannakalli, Pathikalli	Chambakkad, Chinnar
64	Oxalis corniculata L.	Oxalidaceae	Puliyarila	Mattupetty
65	Phyllanthus emblica L.	Phyllanthaceae	Nelli	Munnar, Adimali, Kanthalloor
66	Physalis angulata L.	Solanaceae	Njotta-njodi, potti	Chinnar, Munnar
67	Piper schmidtii Hook.f.	Piperaceae	Kattukurumulaku	Anamudi, Munnar
68	Piper wightii Miq.	Piperaceae	Kattukurumulaku	Munnar
69	Pithecellobium dulce (Roxb.) Benth.	Leguminosae	Korukkapuli, Kodukkapuli	Chambakkaad
70	Rhodomyrtus tomentosa (Aiton) Hassk.	Myrtaceae	Kattukoyyapazham	Anamudi
71	Ricinus communis L.	Euphorbiaceae	Avanakku	Munnar, Adimali
72	Rivea hypocrateriformis Choisy	Convolvulaceae	-	Alampetty, chinnar
73	Rotheca serrata (L.) Steane & Mabb.	Lamiaceae	Cheruthekku	Mattupetty
74	Rubia cordifolia L.	Rubiaceae	Manjishta	Vandiperiyar
75	<i>Rubus ellipticus</i> Sm.	Rosaceae	Mulli, Manjamulli	Munnar, Devikulam, Anamudi, Raja- mala
76	Rubus micropetalus Gardner	Rosaceae	Chuvannamulli	Anamudi, Rajamala
77	Rubus niveus Thunb.	Rosaceae	Mulli	Munnar
78	Rubus racemosus Roxb.	Rosaceae	Chambamulli	Munnar, Anamudi, Rajamala
79	Santalum album L.	Santalaceae	Chandanam	Marayur, Chinnar

S. No.	Species name	Family	Local name	Location
80	Sapindus emarginatus Vahl	Sapindaceae	Soppumkaya	Chinnar
81	Schleichera oleosa (Lour.) Merr.	Sapindaceae	Puvanam, Puvan, Puvanna	Chinnar, Marayur
82	Smilax perfoliata Lour.	Smilacaceae	Chural	Chinnar
83	Solanum americanum Mill.	Solanaceae	Manithakkali, Cherra, Chunda	Kanthalloor
84	Solanum pubescens Willd.	Solanaceae	Chunda, Cheriyachunda	Chambakkad
85	<i>Solanum surattense</i> Burm. f.	Solanaceae	Kazhuthachunda	Vattayar
86	<i>Spondias pinnata</i> (L. f.) Kurz i	Anacardiaceae	Ambazham	Adimali, Munnar
87	<i>Strychnos potatorum</i> L.f.	Loganiaceae	Chillachillam, Thettamparal	Chinnar
88	<i>Symplocos cochinchinensis</i> (Lour.) S. Moore	Symplocaceae	Pachotti, Choolamani, Thulasimaram	Munnar, Devikulam
89	<i>Syzygium cumini</i> (L.) Skeels	Myrtaceae	Njaval	Devikulam, chinnar
90	<i>Syzygium densiflorum</i> Wall. ex Wight & Arn.	Myrtaceae	Navrappazham	Anamudi
91	Toddalia asiatica (L.) Lam.	Rutaceae	Melakarana, Mullichedi, Kadichikarantakam	Marayur, Chinnar, Kanthalloor, Man- navanshola
92	Vaccinium leschenaultii Wight	Ericaceae	Glass pazham	Munnar, Adimali
93	Wrightia tinctoria R.Br.	Apocynaceae	Attukombu, kathippala, Koppela	Chambakkad, Munnar, Chinnar, Ma- rayur, Peermade
94	Ziziphus glabrata B.Heyne ex Roth	Rhamnaceae	Karukotta	Chinnar, Chullippetty
95	Ziziphus oenopolia (L.) Mill.	Rhamnaceae	Thodali, Churi	Chinnar
96	Ziziphus xylopyrus (Retz.) Willd.	Rhamnaceae	Kattukotta, Kadamankotta	Chinnar

HRML project half yearly report

S. No.	NTFP	201	13-14	20	14-15	20	15-16	201	6-17	20	17-18	20	18-19	Threat Status*
		Kg	Rs.	Kg	Rs.	Kg	Rs.	Kg	Rs.	Kg	Rs.	Kg	Rs.	
1	Karikurinji <i>Nilgirianthus ciliatus</i> (Nees) Bremek. Acanthaceae	2778 Rs.	31518 11/kg	1325 Rs.	19825 15/kg	4197 Rs.	51539 12/kg	5449 Rs. 1	76986 14/kg	9856 Rs.	147840 15/kg	9990 Rs	160830 16/kg	VU
2	Pinari <i>Nothapodytes nimmoniana</i> (J.Graham) Mabb. Icacinaceae	2040 Rs.	55280 27/kg	80 Rs.	2800 35/kg	4664 Rs.	145998 31/kg	1450 Rs. 3	50750 35/kg	1350 Rs.	47250 35/kg	2367 Rs	101750 43/kg	NE
3	Marotti <i>Hydnocarpus pentandrus</i> (BuchHam.) Oken Achariaceae	9500	- 552	8 Rs.	480 60/kg	30 Rs.	1980 66/kg	100 Rs. (6000 60/kg	100 Rs.	7000 70/kg	902 Rs.	144320 160/kg	VU
4	Pachottitholi Symplocos cochinchinensis (Lour.) S. Moore Symplocaceae	547 Rs.	16454 30/kg	180 Rs	645 . 4/kg	319 Rs.	11165 35/kg	-	-	17 Rs.	765 45/kg	2732 Rs	157952 58/kg	NE
5	Pattinja <i>Acacia intsia</i> (L.) Willd. Leguminosae	-	-	370 Rs.	18338 50/kg	-	-	886 Rs. 5	44325 50/kg	904 Rs.	50852 56/kg	775 Rs	45711 59/kg	NE
6	Kurumthoti <i>Sida rhombifolia</i> L. Malvaceae	-	-	-	-	-	-	-	-	30 Rs.	1350 45/kg	405 Rs	21350 53/kg	NE
7	kurumulaku <i>Piper nigrum</i> L. Piperaceae	928 Rs.	19761 21/kg	-	-	413 Rs.	12380 30/kg	324 Rs. 3	11357 35/kg	2429 Rs.	88261 36/kg	2563 Rs	130112 51/kg	NE
8	Thanikka <i>Terminalia bellirica</i> (Gaertn.) Roxb. Combretaceae	-	-	800 Rs.	8000 10/kg	-	-	-	-	-	-	-	-	NE
9	Kasthurimanjal <i>Curcuma aromatica</i> Salisb. Zingiberaceae	1184 Rs.	83915 71/kg	1747 Rs.	129394 74/kg	829 Rs.	52962 64/kg	1330 Rs. (79386 60/kg	953 Rs.	71925 75/kg	-	-	NE
10	Chittaratha Alpinia calcarata (Haw.) Roscoe Zingiberaceae	-	-	-	-	-	-	60 Rs. 7	4200 70/kg	41 Rs.	3280 80/kg	-	-	NE

Table 6. List of selected tradable bio-resources in the HRML study area

S. No.	NTFP	201	13-14	20	14-15	20	15-16	201	6-17	20	17-18	20	18-19	Threat Status*	
		Kg	Rs.	Kg	Rs.	Kg	Rs.	Kg	Rs.	Kg	Rs.	Kg	Rs.		
	Kattupadavalam	140	14000	182	31624	-	-	235	23500	212	30750	-	-		
11	<i>Trichosanthes cucumerina</i> L. Cucurbitaceae	Rs. 1	100/kg	Rs.	174/kg		-	Rs. 1	00/kg	Rs.	145/kg		-	NE	
10	Cheevakai	614	18280	2420	84990	390	9750	176	6490	70	3500	-	-	NE	
12	<i>Acacia sinuata</i> (Lour.) Merr. Leguminosae	Rs.	30/kg	Rs.	35/kg	Rs.	25/kg	Rs. 1	74/kg	Rs.	174/kg		-	NE	
	Chunda	97	1940	401	8020	1700	19800	570	17100	1135	34050	22	660		
13	<i>Solanum torvum</i> Sw. Solanaceae	Rs.	20/kg	Rs.	20/kg	Rs.	12/kg	Rs. 3	30/kg	Rs.	30/kg	Rs.	30/kg	NE	
	Thelli	-	-	15	2375	-	-	-	-	-	-	25	3250		
14	<i>Canarium strictum</i> Roxb. Burseraceae		-	Rs.	158/kg		-		-	Rs.	130/kg	Rs.	58/kg	NE	
	Makkumkaya	-	-	-	-	16	320	38	870	750	24000	895	29025		
15	<i>Entada gigas</i> (L.) Fawc. & Rendle Leguminosae		-	Rs.	20/kg	Rs.	23/kg	Rs. 3	32/kg	Rs.	32/kg	Rs.	59/kg	NE	
	Honey	-	-	-	-	-	-	-	-	375	30350	61	51851		
16	(Small Honey)		-		-		-		-	Rs.	81/kg	Rs.	850/kg	-	
	Honey	-	-	-	-	-	-	-	-	45	13500	623	244200		
17	(Large Honey)		-		-		-		-	Rs.	300/kg	Rs.	392/kg	-	

*As per IUCN status 2014; VU = Vulnerable; NE = Not Evaluated

Table 7. Summary of progress report

S. No.	Activities	Progress of study	Key insights regard- ing the studies	Details of report submitted so far	Challenges faced/ concerns	Deliverables
1	Collection and compilation of Sec- ondary data (Group/taxa/subject wise).		Х	Х	X	-
2	Primary data collection (Group/taxa/ subject wise). Transect/Pollard walk or multiple quadrat/plot method or Point count censes or focal-animal sampling with the participation of subject experts.	Field visits were conducted in Adimali, Munnar, Devi- kulam, Kanthalloor and Marayoor Grama panchay- aths. Focal Discussions with knowledge providers and data pooling are in progress.	Х	Х	X	Data of flora and fauna of project areas based on gaps in PBR
3	The documentation of Commercially exploitable bio-resources with the support of representatives of stake- holders via focus group discussions/ survey.	ress with the help of BMCs/ Girijan service co- operative	Overexploiting of medicinal plants	Х	Illegal trading	Data of trad- able bio-re- sources
4	Assigning threat status of species based on primary and secondary data and study impact of natural disasters on Biodiversity.	Х	Х	Х	Will be done af- ter the comple- tion of documen- tation	_
5	Document critical gap areas in the PBR: based on consultation with BMCs/previous PBR registers/pan- chayath committees/local communi- ties etc.	PBR updation with the in- clusion of economic values in the tradable bio-resources is on progress.	Х	Х	BMCs are inef- fective. Several gaps identified in PBRs	Х

S. No.	Activities	Progress of study	Key insights regard- ing the studies	Details of report submitted so far	Challenges faced/ concerns	Deliverables
6	Check the present status of bio-resourc- es (assign rank based on the % of loss/ gain with respect to the secondary data. Also, the Group/taxa/subject wise up- dation of PBR and its digitization (e- PBR).	The PBR software designing is completed, its trial Data updation is on progress.	Х	Х	Х	U p d a t e d ePBR
7	Studying the ongoing changes and forc- es driving changes in Bio-resources/ landscapes and its impact in the liveli- hoods of native people.	Х	X	X	Х	Develop- ment of m a n a g e - ment strat- egy.
8	Compilation of primary and second- ary data especially in the economically important bio-resources (Group/taxa/ subject wise) via Rural Rapid Appraisal (RRA) and Participatory Rural Apprais- al (PRA) methods.	Х	X	Х	Х	-
9	Assigning an index/Rank (category wise) of biological resources involved in Indigenous use/trading purpose/illegal overexploitation for ABS linking.	data pooling is on progress-	X	Х	Lack of aware- ness in ABS	-
10	Implementation of Sustainable best practices of ABS via. analysing the long- term availability/IUCN status /trade channels/marketing networks/financial transactions thereby improving native people's life.	workshops were conducted with the TK holders/Sub- ject experts/Environmental	Х	Х	Х	Data of flo- ra and fau- na of proj- ect areas

REFERENCES

- 1. https://www.cbd.int/mountain
- 2. https://www.cbd.int/mountain/agenda21.shtml
- Mainpower NZ Limited v Hurunui District Council. Decision No. [2011] NZEnvC 384. 9 December 2011.
- 4. http://www.algaebase.org
- 5. https://mvnpanikkar.com
- 6. http://ucjeps.berkeley.edu
- 7. http://www.ijpab.com/form/2013%20Volume%201,%20issue%206/IJPAB-2013-1-6-77-83.pdf
- 8. http://www.iosrjournals.org/iosr-jestft/papers/vol4-issue3/F0433539.pdf?id=3760
- 9. http://indianecologicalsociety.com/society/wp-admin/pdf/F1.3.pdf
- 10. https://www.hbw.com/species
- 11. https://www.rufford.org/files/10399-1%20Detailed%20Final%20Report.pdf
- 12. https://www.google.com/amp/s/www.thehindu.com/news/national/kerala/survey-puts-nilgiri-tahr-popula-tion-at-1420/article18723761.ece/amp/
- 13. https://www.thehindu.com/thread/reflections/the-nilgiri-tahr-the-pride-of-munnar/article25168869.ece
- 14. https://www.thehindu.com/news/national/tamil-nadu/Nilgiri-tahr-faces-threat-in-Western-Ghats/article11144732.ece
- 15. http://datazone.birdlife.org/species/factsheet/nilgiri-pipit-anthus-nilghiriensis/text
- 16. https://www.researchgate.net/profile/Nameer_Prof_PO/publication/255962881_Strophocincla_Laughingthrushes_of_South_India_a_case_for_allopatric_speciation_and_impact_on_their_conservation/ links/00b7d52105a566cf4a000000/Strophocincla-Laughingthrushes-of-South-India-a-case-for-allopatricspeciation-and-impact-on-their-conservation.pdf
- 17. http://aetos.kiev.ua/berkut/berkut21/ethology21.pdf
- 18. MoEF (2009) India's fourth national report to the convention on biological diversity. Ministry of Environment and Forests, Government of India.
- 19. IUCN (2012) IUCN red list categories and criteria: Version 3.1. Second Edition. Gland, Switzerland and Cambridge, UK: IUCN.

6. PROJECT 2

REVIEW OF ECOLOGICAL AND DEVELOPMENT HISTORY OF VARIOUS SECTORS AND CHANGES IN SELECTED ECOLOGICAL UNITS IN GEF- MUNNAR LANDSCAPE PROJECT AREA

6.1 AIM

To identify the ecological changes that has occurred in High Range Munnar landscape and to identify its cause and causer. Year after year, environment and ecology throughout the world endures tremendous changes. The involvement of human beings in this phenomenon is a matter of past doubt. This study is intended at identifying ecological changes that had happened during the last several years. The study mainly focuses on 9 Panchayath in Idukki district, 1 Panchayath in Ernakulum and one in Trissur district.

6.2 OBJECTIVES

The major objectives of the study

- 1. Identification and documentation the ecological past, drivers and process of modification of various ecological elements in the landscape and their consequent impacts.
- 2. Documenting various development activities, projects, drivers of change, agencies, and agents of development, institutions and their impacts in the indigenous and migrant settler communities in the HRML.
- 3. Reviewing development trajectories of various communities and social institutions that have consequences to implementation of HRML programme activities.
- The consultants during the expert committee meeting conducted in Kerala state Biodiversity Board suggested focusing in the following aspects:
 - Documentation of the changes in the spatiotemparal extent and qualitative changes in selected ecological units such as riparian areas, sholas, valleys, forest, and grasslands.
 - Documenting development activities in different sectors (plantations & horticulture, animal husbandry, tourism, transportation, Hydel, quarries, man and animal interactions.) drivers of change, historical and cultural process that induced change on Munnar landscape
 - Reviewing impacts of development trajectories on the indigenous and migrant settler communities in the HRML.

6.3 Methodology

Rapid Rural Appraisal (RRA) and Participatory Rural Appraisal (PRA) methods will be employed to document ecological changes and development history in production sectors. Representatives of stakeholders including government departments as agriculture, fisheries, industry, commerce, planning, customs and exercise; the private sector; and local communities and non-governmental organizations (NGOs) and academia, will be involved through focus group discussions. Secondary information available with various departments and from peer reviewed journal will be made use of.

a) Documentation of Ecological Changes

- 1. Review of bio- climatologically and vegetation changes and affinities in the selected landscape on long duration.
- 2. Review formation of present- day land –use categories and patterns including human modified, forested and protected areas.
- 3. A general documentation of changes in the vegetation communities and flora and fauna components and drivers of these changes.
- 4. Documentation of changes in the spatial extent and qualitative changes in selected ecological units (riparian areas, vayals, sholas, valleys, forests, and grasslands) of the landscape and nature of changes these underwent.
- 5. To identify, characterize and critically evaluate major agents and drivers of change in the landscape and provide possible implications of these for the future management of biological diversity in the landscape.

b) Documentation of development history in production sectors

- 6. Review of historical and cultural process and agents that induced/inducing change on larger land cover categories over the past two centuries.
- 7. Review of major developmental sectors and developmental interventions with cascading ecological effects induced by these interventions (development of plantation- land cover changes, road communication network, river valley project, labour and settler population built up etc.
- 8. Identify and critically evaluate agencies (institutions and subjects) and drivers of change in the landscape.
- Evolution of government, quasi government, voluntary and Nongovernment organizational network in HRML; analysis of their integration, cross linkages, inter- institutional communications and compatibility for HRML programme

6.4 .Detailed Progress Report

- During the first half year of the project, Research personnel (one Research Associate and • one project assistant) were appointed.
- Consultants were identified in various sectors and expert consultative meetings were held. First consultative meeting was held on March 12, 2019 in the Head Quarters of Kerala State Biodiversity Board, Thiruvananthapuram (Annexure I). Second consultative meeting was held on June 26, 2019 (Annexure II). Third consultative meeting was held on November 21 and 22, 2019
- Quarterly progress report was presented to the Technical Agencies for the GoIUNDP-GEF India High Range Mountain Landscape Project meeting, held at Hotel Hycinth, Thiruvananthapuram on June 18, 2019 (Annexure III).
- Secondary data regarding Demography, Historical and Cultural process that induced change was compiled form various sources
- Secondary data regarding major developmental process in Production sectors such as Tourism, Quarrying, Plantations, Hydel projects that led to land use change was compiled from various sources.
 - For field level data collection, 10 BMC meetings were conducted in 10 Grama Panchayath, except Edamalakudy which could not be done due to bad climate condition and inadequate transport facility.

Local perceptions regarding major drivers of change in the landscape were collected

- Procurement of base maps completed and preparation of GIS maps to analyze the land use change is ongoing.
- Questionnaire format was developed for conducting PRA and RRA for local perceptions regarding land use change

6.4.1. Review of historical and cultural process and agents that induced change on the landscape

Demographic details

Details of census done during the year of 2001 and 2011conducted in Idukki district are shown below the table.

	Table:	1
--	--------	---

SL	Description	2011	2001
1	Population	11.09 Lakhs	11.29 Lakhs

			88	
2	Actual Population	1,108,974	1,129,221	
3	Male	552,808	566,682	
4	Female	556,166	562,539	
5	Population Growth	-1.79%	7.03%	
6	Area Sq. Km	4,356	4,356	
7	Density/km2	255	259	
8	Proportion to Kerala	3.32%	3.55%	
	Population			
9	Sex Ratio (Per 1000)	1006	993	
10	Child Sex Ratio (0-6	964	969	
	Age)			
11	Average Literacy	91.99	88.69	
12	Male Literacy	94.56	92.33	
13	Female Literacy	89.45	85.02	
14	Total Child Population	105,641	134,177	
	(0-6 Age)			
15	Male Population (0-6	53,785	68,155	
	Age)			
16	Female Population (0-	51,856	66,022	
	6 Age)			
17	Literates	923,010	882,458	
18	Male Literates	471,881	460,310	
19	Female Literates	451,129	422,148	
20	Child Proportion (0-6	9.53%	11.88%	
	Age)			
21	Boys Proportion (0-6	9.73%	12.03%	
	Age)			
22	Girls Proportion (0-6	9.32%	11.74%	
	Age)			
	raa : (https://www.consus2011			

Source :(https://www.census2011.co.in/census/district/279-idukki.html)

Table No1 shows that there is a change of -1.79 percentage in the population compared to population as per 2001. The population of the district between 1971-81 showed an increase of about 27 percent as against an increase of 19 percent for the state as a whole. Since most part of the district is covered with dense forests and plantations there is lesser area for

habitation. There is also large scale conversion of forest areas into arable lands for past two decades. This has resulted in the increase in population in the hilly taluks of the district, especially in Udumbanchola and eastern parts of Thodupuzha taluk. From 1991 to 2001 census in Idukki district shows a increase of 7.03 percentage in total population growth. The decadal growth rate of Kerala's population is estimated at 4.9 per cent, the lowest among Indian states. (Economic review 2016, State Planning Board).

Migration to western Ghats-Idukki –Major land marks

- 1700s-Tamilians known as the Muthuvans migrated to Munnar.
- 1877 Advent of European Planters. In 1877 Kerala Varma, the Raja of Poonjar, sold 227 sq. miles of Kannan Devan Hills to John Daniel Munroe, a British planter.
- 1890-1920 migration of plantation workers
- 1920-50- Mass migration of farmers to different parts of Idukki- Aftermath of II World War
- 1950 Colonies were established for Ex-servicemen

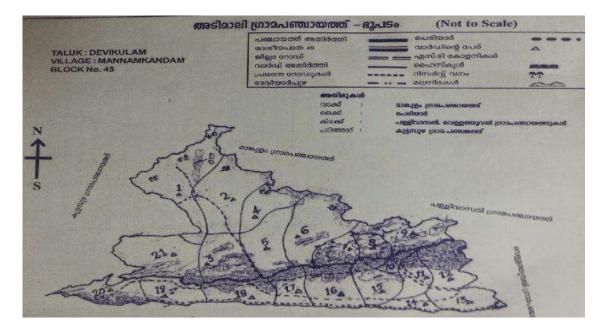
The settlement areas in Udumbanchola that occupied hardly 0.73% in 1910 were increased to 30.57% in 1990 by transferring forest lands, grasslands and cardamom plantations. The total area under plantation in this area had increased from 98, 123 acres in 1921 to 136,802 acres in 1931, an increase of more than39%. (Census of Travancore 1931). During the1951-1961 periods this area witnessed the phenomenal population increase of 675.75%.

In order to withstand the severe shortage of food crops during the 2 nd world war period, the government encouraged massive migration to the vast forested and fertile areas of the high lands, for the production of staple food crops, mainly paddy. However, massive enchroachments were reported only from the early fifties, and the process of enchroachment continued during the sixties and the seventies 18 . A major change notices in the expansion of settlement areas, which acted as catalyst for furthur changes in the form of infrastructure development with far reaching impact on the land use pattern and ecological balance of this region 19. In 1910, there was hardly 0.73% of the area under settlement that has increased to 30.57 with the combination of mixed crops. The narrow valley bottoms and marshy areas were transformed as paddy fields mainly because of the strategy adopted in the early days of migration for the producing staple food crops.

Tribal population data state and district level

		Kerala state		Idukki district	
	Number		percentag e	Number	percentage
Scheduled Tribes in	Persons	484,839	1.45	55,815	5.03
idukki district	Males	238,203	1.49	27,995	5.06
	Females	246,636	1.42	27,820	5.00

Table No: 2


Source: (Census of India 2011)

Wayanad has the highest number of Tribals (136062) Idukki has the second highest number of Tribals living area. The third position is Palakkad. TableNo2 shows a 6 percentage change in both male and female sex ratio in Idukki district.

Meeting with Kodakalkudy tribal people, Adimalypanchayath

a.Adimali Panchayath

Adimaly is a town in the <u>Idukki district</u> of <u>Kerala</u>, 27 kilometres to <u>Munnar</u>. The National Highway 185 (NH 185) running from Adimaly to <u>Kumily</u> through <u>Kattappana</u> ends in Adoor in <u>Kerala</u>. Adimaly is located on the <u>National Highway 49</u>, now NH85, known as <u>Kochi -Dhanushkodi National Highway (India)</u> connecting <u>Kochi</u> and <u>Madurai</u>, <u>India</u>. The waterfalls <u>Cheeyappara</u>, <u>Adimaly waterfalls</u> and <u>Valara</u> are located nearby. Pepper cultivation is the main agricultural activity of this place. The <u>Ponmudi Dam</u> (294 meter length) was constructed in 1963 across the Panniar River, nearly 15 km southeast of Adimali, on the way to <u>Rajakkad</u>. Adimali is known for its proximity to <u>Munnar</u> and natural environment. Adimaly have almost all the basic facilities like roads, educational institutions and hospital.

More than 20 years before, 80% of the cultivated land was paddy but now the condition is totally changed. The Kurangatimala tribal settlement is only cultivating paddy. Most of the paddy cultivated areas are changed to cash crops and constructed buildings. Before 2017, more than 20 hectors of land was under paddy cultivation. But the condition has changed in 2017 -2018. The paddy cultivation decreased from 20 to 13.5 hectors. The PadasekaraSamithy and an NGO named Care India, worked together and 35 acres of fallow land were used now for paddy cultivation. More than 50 hectors of land is used for tapioca cultivation in AdimalyPanchayat. The Kudumbrasree mission in Adimaly also promotes Adukkalathottam for every household. They provide the seeds of vegetables to the households with the support of agriculture department. The households are cultivating organic vegetables for their own purpose.

The total residential building in this area are 12498 and the nonresidential building under Adimaly Panchayath is 5235. The total number of residential and nonresidential building under AdimalyPanchayat is 17733. Eastern and agro industry are the 2 major company in this area. There are 28 tribal settlements under the TEO Adimaly. They are Muthuvan, Mannan, Ulladan, Ooralan, and Malayarayan. Most of the tribal people are doing different works. Some of them are collecting NTFP and others are doing cultivation in their own land. Some people are collecting bamboos from the forest and sell them. Several people are doing MNREGA and kooli works from outside the community. Some people are collecting medicinal plants and honey from the forest and they sell them to Girijan society. In Adimaly some of them are selling honey directly to public or other markets in Adimaly.

b.Munnar

Munnar is bounded by Pallivasal in the south, Marayoor Village in the north, Mankulam Village in the west and Vattavada and Chinnakanal village in the east. It extends from 10°1'36" North to 10°19'45" North latitude and 76°53'23" East to 77°15'34" East longitude. It covers an area of 478 sq.km and has total population of 55753 as per Census 2011. The Munnar grama panchayath have 21 wards. The total number of households in Munnar panchayat is 7968. Total population in this area is 32029. The male proportion in under Munnar panchayat is 16069 and the female proportion is 15968. The total number of scheduled caste people in this area is 17657. Scheduled tribe population is 2176. A hill station and former resort for the British Raj elite, it's surrounded by rolling hills dotted with tea plantations established in the late 19th century. Eravikulam National Park, a habitat for

the endangered mountain goat Nilgiritahr, is home to the Lakkam Waterfalls, hiking trails and 2,695m-tall Anamudi Peak.

From 2010 onwards Grama Panchayat has restricted permit for the construction of high rise buildings. Up to 97 percent of areas in Munnar belongs to KDH Company. Livelihood of local people depends on the company, and it provides all their requirements. KDH permit some plots of land for local people for the purpose of agriculture (non-commercial purpose).

Munnar panchayat office

The soil texture in Munnar forest division, in the midland area is yellowish red colored with clayey loamy gravel present in surface. In the mid upland area the texture type is reddish brown to yellowish red with clayey loamy in texture The upland area texture is black to yellowish red with loamy to clayey.

The highland 1 elevation MSL level 600 to 900 is covered with reddish brown to red in colour with clayey loamy. The highland 2 the elevation MSL level 900 to 1200 is covered with dark yellowish brown to red with clayey loamy. The highland 3 the MSL level is 900 to 1200 is covered by the texture of dark reddish brown to yellowish red with silty clay. The mountainous region is the elevation MSL level of above 1200 is covered with the texture of dark reddish yellow with silty, loamy, and clayey in nature (Work plan Munnar forest division 2010-11 to 2019-20).

The climate is more or less temperate in high altitude areas. The temperature varies from 6 to 26°c. Minimum temperature during the last ten years was 6.4°c recorded in February, 1997 and maximum was 25.9°c as recorded in March 2004.

The highly elevated undulating terrain which receives heavy rains from south west and north east monsoons results in the formation of network of rivers and streams and hence there is no scarcity of water in the western slope of tract for the area is well drained.

Another attraction in this area is mainly the tourism. Munnar is a very large and popular tourist destination. The tourists are increasing day by day in this area. The data shows that the number of foreign visitors in Munnar in 2012 was 29326. In 2018, the number of foreign visitors in Munnar is decreased to 24293. But at the same time the domestic tourist in Munnar is increased. In 2012, the number of domestic tourist visitors in Munnar is 307595. In 2018, it is surprisingly increased to 782681. This increased number of tourist in this area is creating lots of hazardous problems in this area like air pollution, waste disposals; increased number of vehicles, noise pollution, and soil erosion. The vast area was being utilized just to construct hotels and restaurants.

A study conducted in Munnar about the marketing of macro small and medium enterprises providing tourist accommodation in Idukki district. It is reported that 78% of accommodation unit in Munnar belongs to category of resorts, 19% home stay category 3% service villa. More than 238 commercial buildings are here.

Landslide Munnar

Tea plantation KDH Munnar

In Munnar Panchayath most of the land (57359 acres of land) is under the control of KDH Company. .With this area under tea crops is 23239.06 acres of land. Area under fuel trees are 16898.91 acres. The area under grazing is 1220.77 acres. The area under buildings, sites, roads, workers garden etc is 2617.69 acres. Area under streams and swamps is 2465.20 acres. The area under uncultivable land is 6393.59 acres. The area under interspersed in estates and in between estates is 4523.92 acres. (Working plan Munnar forest division). Large forest area was demolished for the plantation of tea. The KDH Company mainly cultivated tea plantation, eucalyptus plantation, jasmine plantation, rose plantation, e.t.c. The company have lots of factories in Munnar region. For the purpose of processing tea they needs lots of fire woods therefore the company introduced eucalypts plantation in the Munnar area for their own purpose. The eucalypts plantations raised and managed by cooperate tea companies are exclusively for the fuel requirements of the tea factories and labour lanes. The studies show that the transformation from vegetable farming to eucalypt plantations leads to water shortages in the areas.

The private eucalyptus plantations in the high-altitude but low rainfall areas of Vattavada and Kanthalloor are reportedly causing acute water shortage in the valley bottoms. There is also a recent tendency to convert the vegetable farms to eucalyptus plantations which lead to disruption of local livelihood, cultural drift, impoverishment of local communities as well as

ecosystem malfunctioning (Land use management plan for production landscape in Munnar 2015).

Eucalyptus plantation Kanthalloor

In 1986, there was paddy cultivation in Munnar. Day after day the paddy cultivation area got vanished instead the settlement got increased due to deposition of erosion in that area. The settlement area increased to 5% to 10% because of the increase in population (<u>www.ijrsg.com</u> volume 4, issue 3, May 2015). Animal husbandry is the major activity of the people in here. Panchayath wise reports in 2007 shows that, 140 male and 2565 female exotic and cross breed cattle's are here.

Land use changes in western gats over the last century caused agricultural expansion, conversion to plantations and infrastructural projects. This resulted in loss of forest and grass land (Kumar1993, Jha et al 200, Khan et al., 1997). These changes are also a driving force to land slide problems. The flood in the last year also affected the Munnar region which affected the area adversely. Roads and buildings are destroyed. Many lands under cultivation were badly affected by the land slide.

The main vegetable cultivated in this area are cabbage, carrot, potato, beans, garlic and the other cash crops in this area are cardamom, pepper etc. The potato is the other largest vegetable cultivated in this area, 90 hector of land is used for cultivation and the production is 1080 tonne.

c. Devikulam

Devikulam is a small hill station about 5 kilometres (3.1 mi) from <u>Munnar</u> in the <u>Idukki</u> <u>District</u> of the southern state of Kerala, India. It lies 1,800 metres (5,900 ft) above sea level. The total area of Devikulam panchayath is 215km²(83 sq mi). There are 18 wards in Devikulam Grama Panchayath. The total population in this area is 29734 and the male population is 15101 and the female population is 14633. (Censes 2011) The Devikulam panchayath was officially declared in 2005 October 2. The literacy rate is 75% in this panchayath. There are 10 tribal communities in Idukki district viz. Malayarayan, Muthuvan, Mannan, Urali, hill Pulaya, Ulladan, Paliyan, Malayan, Malavedan and MalamPandaram. In the district, the highest percentage of ST. Population Were Reported in Devikulam Taluk (91%). The total population in Devikulam Taluk in 1875 is 2488. In2001 it reached to 185103. The present population in Devikulam Taluk is 177621 (Census of India 2011).

The area has winter crops cultivation (vegetables). Main crops are Kale, Cabbage, Cauliflower, Green Peas, Carrot, Fenugreek, Beet Root, Potato, Garlic, Rose, Jasmine, Strawberry, Passion Fruit and Tomato. The data from agricultural department shows that 80% of land was under the KDHP Company and Harrison Malayalam private limited company. In this panchayath the Santhozh colony is the only area where land is used for agricultural purpose and 150 families are settled here. In the 500 acres of land, 250 acre is eucalyptus plantation and the remaining land is used for agricultural use and as a residential area.

Panchayath office Devikulam

The tourism in this area is also increasing day by day. The main attractive places in Devikulam area are Mattuppetty Lake, Eravikulam national park, Sita Devi Lake, Keezharkuthu falls, Blossom International Park, Kundala Lake, and Thoovanam falls. Nearly more than 1500 resorts are located in Munnar and Devikulam area. The agricultural cultivation is decreasing day by day due to converting of land from agricultural crops to cash crop and plantation. Some places are facing the problem of wild animal attacks and due to that their agricultural products are destroyed by wild animals, therefore the people are not interested to cultivate crops. In this area about 400 ha is used for winter crops (vegetable), strawberry cultivation etc. Other major crops in this area Cabbage, Cauliflower, Carrot, Beetroot, Passion Fruit, Strawberry, Potato, Rose, Jasmine, Green Peas, Coriander, And Garlic And Tomato.

Tea Plantation, Devikulam

Devikulam

In Devikulam Panchayath, the major land is occupied by KDH Company. In Devikulam panchayath the KDH Company have jasmine and rose plantation. They are using large area of land for this cultivation. The jasmine flowers are exported for processing the jasmine flower and taking the oil from the flower. It's a big profitable business in foreign countries and there is a big demand for this. The major land use in 1997 was the forest area which occupies about 41 % (472.01 km²) and is distributed mainly over the western and northern parts of the region. Area under scrub vegetation forms the next major land use and covers an area of 257.04km² which is about 22.54% of the total area.

In 2004 the condition of the land use changed, the majority of area is covered by forest, scrub, tea and mixed crops. The dominant land use type of the area is forest and it covers about 38.9% (4433.95km²) of the total area. Its main concentration is along the northern and western margins, i.e. along the northern portion of Kannan Devan hills, portions of Mankulam, Mannankandam and Anaviraty villages.

Scrub vegetation is the next largest land use type followed by tea plantations which cover 13.60% (155.09 km² of the total area is occupied by tea estates, mixed crops form another major land use category in the region. (Land use and land cover changes detection using multi temporal satellite data Devikulam Taluk, Idukki district, Kerala). They are mainly distributed over the KDH Marayoor, Mankulam and Mannankandam villages of Taluk.

Jasmine plantation and Rose plantation in Devikulam.

In Devikulam, there are 26 tribal settlements in which most of the people do farming in their own lands, MGNREGA works and other jobs outside the community. Most of the tribal settlement people are facing different problems. Most of the settlement is located in the hill top or inside the thick forest area. In Devikulam panchayath our team visited Kundalam Kudi tribal settlement. The most important problem faced in the settlement is water scarcity in summer season. There is only a spring inside the forest from where they have to collect the water. It is. The water is collected through a pipe which is connected to the water tank inside the settlement. But most of the time the animals like elephant and other wild animals destroy the water pipe. Therefore, in summer season they face the problem of water scarcity. Other problem faced by the people in this settlement is road and transportation. Most of the

settlement is located in hill side or inside the thick forest. So transportation is very challenging. Another problem is lack of the availability of hospital facilities near the settlement. Recently, the Devikulam panchayath took an initiative to set up the electricity connection in that area.

Kundalamkudi (Devikulam)

d.Marayoor

Marayoor in Idukki district is located 42 kilometres north of Munnar. In 1953, the Marayoor panchayath was officially declared. The sandal wood forest is the main highlight of this area. Ancient rock paintings and dolmens in Marayoor date back to the Stone Age.

Archaeological evidence indicates human presence in Devikulam high ranges even from 8000 years ago (gurukkal 1999), ancient dolmens (muniyara) and different kinds of rock paintings in Marayoor, Kanthalloore and Chinnar regions are strongly related to a Stone Age culture. The total area of the panchayath is 108.7 sq km of which 70% are covered by forest. The total population under this panchayath is 9590. Male and female sex ratio in the panchayath is 1001. The total literacy rate is 62%. The total wards under the panchayath are 13. The total number of buildings in Marayoor from 2013 to 10-05-19 is 4978 and 758 new buildings were constructed this year.

The climate in Marayoor is characterized by mild wet winters and hot dry summers. Marayoor area is a rain shadow region so the rain fall is very less in this area. The water availability in this area depends upon the rain fall in the high land region of Munnar area. The major rivers in this area are Pambar, Melaady and Karimutty.

Marayoor panchayath office and agricultural office.

10 years before most of the areas were under paddy cultivation. A major change was noticed in the utilization of paddy fields. In Marayoor region, paddy was a major crop cultivated since 18th century. At present some tribal settlement only cultivate paddy. Most of the paddy cultivation is converted to sugarcane cultivation. The main reason for this as explained by the local community is that because of the less availability of water, the amount of money that is spend for paddy cultivation is much more than sugarcane cultivation, further if once they plant sugarcane in an area they can take harvest three times per crop. In 1980 most of the tribal house was built by bamboo and clay hut but now most of the building in the tribal settlement are converted to concrete buildings. The tribal people are cultivating different types of agricultural plants and cash crops. Mainly there are 13 tribal settlements. Hill pulayans and Muthuvans are present in Marayoor Gramapanchayat. A tribal welfare society is present in Marayoor town area. They mainly collect NTFPs as Lemon grass, sugarcane, large honey, small honey, Kodampuli, Ragi, Gooseberry, Kadukka, Padavalakodi. The tribal welfare society directly collects this item from Tribal's. The people in some tribal settlement are cultivating paddy and vegetables in their settlement.

ACFC tribal welfare society Marayoor

When people started cultivating on steep side slopes, without proper soil conservation measures, the eroded soil got deposited in the paddy fields and the cultivation became difficult and less profitable. (Land use and land cover changes detection using multi temporal satellite data Devikulam taluk, Idukki district, Kerala Mani. K, International Journal of Geometrics and Geosciences Volume 3 Issue 1, 2012).

In Marayoor panchayath more than 345 ha of sugarcane cultivation is present .Within this only three acres of sugarcane cultivation are done by the tribal people. Other cultivations are 50 ha beans (butter beans and muringa), two tribal settlements are cultivating coconut. Potato cultivation is also done by the tribal people. 150 ha is under areca nut cultivation in Marayoor panchayath. Lease cultivation is the main cultivation practice in this area. People take land for lease for a fixed period of time and cultivate crops and give rent for the land to the land owners. Recently the agricultural department took an initiative for the promotion of paddy cultivation in the upland area but it is not much effective. Now there is only 3 acre upland paddy cultivation in Puravel region.

Recently the changes in cultivation that is the paddy to sugarcane introduced some sugarcane manufacturing industries in this area. Mainly there are 3 industries and they are sugarcane manufacturing society, MAPCO and MAHARD.

Marayoor is the only place in Kerala which has natural sandal forest. The processing jobs are done by the selected tribal people. One VSS is working in Marayoor. During the field work, the team interacted with the Secretary of Marayoor VSS, and discussed about their organisation "Chilla", tribes getting opportunity to sell the Non timber forest produce through auction. They can directly sell their products to other states (Tamil Nadu) such as Butterbeans, Kaattupadavalam (177 per Kg) and honey.

The people from outside and vegetable sellers are directly participating this auction. One of the important thing is that most of the products here are organic, so most of the people in this area and people from outside panchayath are also participating in this auction. Every Thursday they conduct the auction with the help of VSS. So the tribal people are getting reasonable rate of amount for their product.

Rajeev Gandhi nature park Marayoor

There are 11 tribal settlements within the sanctuary and the residents are dependent on the sanctuary for firewood and other minor forest produces. The residents of the tribal settlement lying on the periphery of the sanctuary also depend on the sanctuary for the same. The tribes mainly collect items such as honey, gooseberry, lemon grass and poles for construction of houses. The NWFP collection is without any regulatory mechanism and the rights to NWFP under the Forest Rights Act is yet to be settled. The quantity of materials collected by the tribes has not been studied.

e.Kanthalloor

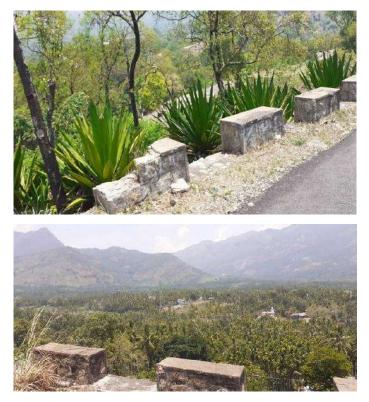


Image from kanthalloor

Kanthalloor panchayath is under the Block division of Devikulam. The total area of the panchayat is 116.29 sq km. There are 13 wards and the total population is 10265 (census 2011). Total number of males is 5272 and females are 4993. Male female ratio is 947. The climate in this area is very cool. The soil here is gravel, black soil, red soil, loam soil. The average rainfall of the area is 60.00 m.m. Total literacy rate is 71%.

Kanthalloor panchayath was awarded for the most rice cultivated panchayath in 2010.But recently the paddy cultivation declined and the remaining paddy fields exist only in one ward (Keezhanthalloor). Recently, paddy fields were transformed into sugarcane.

Wheat was cultivated about 15 years ago. The main vegetable cultivations are carrot, beetroot, cabbage, green peace, garlic; beans are the main winter season vegetable cultivation. Eucalyptus plantation exists in most of the areas. Sugarcane cultivation is reported only from one tribal ward. Ragi is cultivated in some tribal settlements. Other major plantation crops are tea, cardamom, coffee in this area. Most of the areas are under the control of plantation comparatives which include Tata tea limited Harrison Malayalam, Thalayar estate etc. are the main tea plantations in this area.

The main water sources are streams in this area. In some hilly areas and tribal settlements face water scarcity.

Eucalyptus plantation Kanthalloore

Most areas are covered with eucalyptus plantation. In summer season, some areas catch forest fire. Therefore large area is destroyed by forest fire every year. In the lower side of the Kanthalloor area, people are cultivating Coconut and Arecanut.

Animal husbandry is the important source of income. Most of the family is doing animal husbandry in small scale and large scale.

Tribes in Idukki

A tribe is a social group, who lives in a definite area. They have a common culture, traditions and their own customs. The uniqueness and beliefs of tribes are closely connected with natural resources and the environment in which they live.

Population of tribes in Idukki

The total population of tribes in Kerala is 484,839 and with this 238,203 represents the male population and the female population of tribes in Kerala is 246,636. In Idukki district the total population of tribes is 55,815 and with this the male population is 27,995 and females are 27,820. The main group of tribes in Idukki are Mannan, Muthuvan, Malayarayan and Ulladan,

Livelihood

Most of the tribal people do farm works. Men go for jobs outside the community. Women go for MNREGA works. Some people do agricultural works in their own lands. But most of the tribes do not have land because tribal people lost their lands as land was kept as a mortgage for money at times of need. They seasonally go to the deep forest areas for collecting forest resources like thelli, honey, pathri, medicinal plants, kattumanjal, kattukoova, Nooron, incha and food resources like tubers etc.

People say that the availability of honey and other products from the forest is also decreased. They meet their livelihood from their own cultivations and from "eettavettu" (reed work)for HNL company and bamboo corporation also collects reed and bamboo. This is the main income generating works in most of the settlement. According to them there is no profit from agriculture. 90% of people live by wild resources. Now eetta is the only wild resource, collected and taken to home to make "paaya" and "kutta" and "murram" which is sold for around Rs 100 in market or public.

Most of the settlements are more than 40 years old and they live there and cultivate different crops in their settlement. More than 20 years back, most of the settlements were cultivating rice and ragi but at present the paddy cultivation is completely vanished from most of the settlement in Idukki. Earlier they used to migrate after one year of agriculture and practice shifting cultivation. But now they are settled in a permanent land and have permission for cultivating only in this land.

More than 20 years back most of the settlement were completely covered by "Theruvappullu". So the people extract oil from this and sell them to the market and this was the main livelihood of tribes. Recently this lemon grass has been replaced by rubber. Earlier most of the settlement were cultivating food items for their own need so they cultivated raggi, keppa rice, tubers like tapioca, Yam, Colocasia etc. But the transformation from this food crops cultivation to non-food crops is a major change in land use pattern. Previously the people cultivated traditional varieties of rice such as Peruvazha(Rice), silon (tapioca), Njalipoovan, Palenkodan, Chundilaakannan (Banana). In Komaly Kudi in bison valley most of the tribes were Muthuvan community and they previously cultivated 2 varieties of rice called "Manjapperuva and vellapperuva". According to them, this varieties is now not available in their settlement. In their words, their main staple food was raggi which gives healthy disease free body but these food items are completely vanished from the settlement. In Kurathy kudi under Adimali tribal office still a traditional variety of rice called peruvaya is cultivated by 2 to 3 families.

According to Kaani from Komalikudy; Raggi scarcity has affected their community a lot. Recently the tribal people are buying all items from the market. They get free ration and other items which they buy from the market. This gives a grim picture of food habit transition of tribal people. According to them, due to this transition, the life expectancy of Muthuvan and other tribes in Kerala reduced from 110-120 years to 60-75. Most of the tribes agreed that the food habit changes affected their life expectancy and health. Most of the people use mobile phones, TV etc and this things are now an essential part of their life.

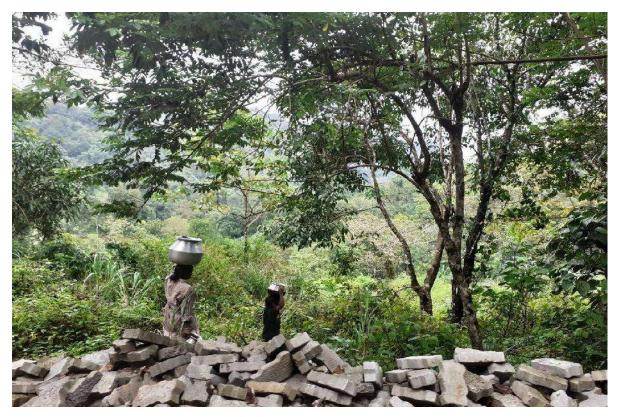
Crisis faced by the tribes

a) Wild animal attack

Most of the settlements are in thick forest area. So most of the colony face the attack of wild animals like elephant, wild pig etc. Recently most of the settlement face crisis of crop damage due to wild animals. Most reported cases are elephant attacks in all the settlement and general people who live near the side of the forest area are reporting that their crops are destroyed by wild animal mainly by elephants. The elephants are getting attracted with some crops like banana and pineapple. Recently the people reported, the rubber plantations are also destroyed by elephants because the sweetness of rubber milk is attracting the elephants and they feed on the outer skin of rubber tree leading to serious health issues for the elephant in future. Other wild animals like wild pig, wild porcupine, monkey and squirrels also damage main crops. Don't have enough food in the forest, so they come to the human settlement.

b) Poor transportation facilities

Most of the settlements are located in the thick forests and are facing the problems of transportation. Most of the hospitals were located in town areas therefore their travel is time consuming. In some emergency medical situations the people die on the way to hospital. Most of the roads are mud road where only 4x4 jeep can survive there. During the rainy season, the road will completely get damaged and they get isolated.


Destroyed roads

Most of the settlement has more than 2 to 3 jeeps. But due to the maintenance cost people rarely use these vehicles

c) Water scarcity

Water scarcity is the most important problem faced by most of the settlements most of the water project from Panchayath and irrigation department failed due to wild animal attack

damaging the water pipe connection. During the rainy season they faced land slide, because most of the settlement are located in the slopy areas. Due to heavy rain fall and water flow lots of tribal settlement area is facing landslides in rainy season.

Woman carrying drinking water

d) Cultural/Language erosion

Most of the settlements accepted that their new generations were on the way of transformation from their traditional culture to modern culture. They says that education and interaction with other community changed their styles, personality and culture. The best example of their change can be identified from their dressing, hair cutting and talk. At the same time some tribes is till following their culture in a strict manner. The best example is the tribes of Edamalakudy. Excluding this the settlement is under the path of changes. Most of the children go to school till 10th grade after that they stop their education. But some students go for higher studies. Earlier the Tribals marry within the cast but at present they marry from other groups especially the tribes marrying general people. The new generation do not much like to participate in their old traditions, so they keep a distance during the time of ceremonies. Previously they celebrated 4 to 5 festivals in a year and now it is decreased to 1 to 2 festivals in a year. Most of the educated tribal people beautifully speaks Malayalam,

English and some other languages, but at the same time they also can speak their language fluently.

Young tribal men during ceremonies

Previously the death ceremonies of the tribes were very complicated. They bury a person's body in a thick forest along with a Knife and Shovel. Using rifle they fire two times to the sky. They keep these tools like knife and shovel with buried person due to a belief that the dead person will reach a new place, and for meeting the liveli hood in the new area he needs these items. At present, the concept changed and they bury the dead body in their own land.

e) Loss of traditional knowledge

Tribes and other general people visit the traditional vydhyas for different type of diseases. The vydyas go to the thick forest and collect the medicinal plants and prepare medicine. Earlier they got medicine from nearby places of the settlement but now the availability of medicinal plants decreased. And the new generation did not have any idea nor any interest to learn.

Medicinal herbserbs from forest

f) Exploitation from others

A study conducted in Kanthaloor showed that People get very less price for their produced vegetables. The BMC members of a tribal community say that they are cultivating kaatupadavalam and passion fruit in their land. They sell this to the market but they do not get enough money for their hard work. The shop owners will say that price is less because of rain. Profit is gained by intermediate agents. Previously the people cultivated cardamom organically but the demand of organic cardamom has decreased and the merchants advise to use pesticides and give good cardamom. Most of the houses are now converted from hut to concrete building but the quality of all building is very poor in every rainy season. Most of the buildings have leakage problem due to poor quality.

6.4.2. Documentation of Developmental history in Production sector

The secondary information was collected from various departments and peer reviewed journals. A brief summary of the Impact of various sectors, as Plantations & Horticulture, Animal Husbandry, Tourism, Transportation, Hydels and Quarries are presented below

Land use changes in Idukki

K. Raju et al conducted a study "Land use changes in Udumpumchola Taluk, Idukki district— Kerala: An analysis with the application of remote sensing data. This comparative study shows that the settlement areas that occupied hardly 0.73 % in 1910 increased to 30.57 % in 1997 by transferring forest lands, grassland and cardamom plantations. The depletion of natural vegetation and grassland system by the establishment of houses, cash crops and infrastructure facilities, combined with the absence of sufficient land management measures in the side slopes resulted in severe land degradation and the present status of degraded lands is about 14.12 % of the total geographical area. It is also observed that the prevailing agro-climatic conditions favourable for the sustenance of sensitive crops like cardamom has undergone changes mainly due to the impact of large-scale land use modifications.

a) Impact of tourism growth in Idukki district

The hill stations, dams, mountains, spices, plantations, elephant rides, wild life sanctuaries etc. adds to the beauty of Idukki and these factors attract people to Idukki district of Kerala which is the third largest tourist destination of the state. The modern tourism era emerged and developed in 2000. Since then there is a vast change in the development of tourism sector.

The 21st century has witnessed a tremendous change in tea industry, development in educational sector, increase in the literacy rate, infrastructure facilities and so on. This helps in the economic development in local and state level.

Rough mountains and forest shield about 97% of the total area of the district. The protected area includes Thattekad birds sanctuary in the west Kurinjimala sanctuary to the east, Eravikulam national park and Chinnar wildlife sanctuary to the north east, Anamudi shola national park to the north, Pampadum shola national park to the south and Periyar tiger reserve in the south.

The major tourist destinations in the study area are:

- 1). Munnar- munnar-mattupetty dam
- Pothamedu view point
- Rajamala
- Devikulam
- 2).Munnar Pothamedu
- Blossom International park
- Chithirapuram
- Pallivasal
- Attukad waterfalls
- Cheeyappara waterfalls
- 3). Munnar- rajamala- marayoor, chinar
- Tea museum
- Nyayamakad waterfalls
- Eravikulam national park
- Lakkam waterfalls
- Vagavari
- Marayoor
- Muniyara the caves of the ancient tribes
- Chinnar wildlife sanctuary
- 4). Munnar Devikulam range
- Devikulam lake
- Lock heart gap

- Power house waterfalls
- Anayirankal dam

Sajan N Thomas conducted a study in Munnar about the marketing of macro small and medium enterprises providing tourist accommodation in Idukki district. Accordingly 78% of accommodation unit belongs to the category of resorts, 19% homestay category and 3% service villa

Number of commercial buildings in 6 panchayath in Idukki district

S.L	Name of the panchayath	No of commercial buildings
1	Adimaly	481
2	Munnar	238
3	Marayoor	44
4	Kanthalloore	28
5	Devikulam	42
6	Chinnakkanal	25

Table: 3-Number of Commercial Building

(Source: District Industries Centre, Cheruthoni)

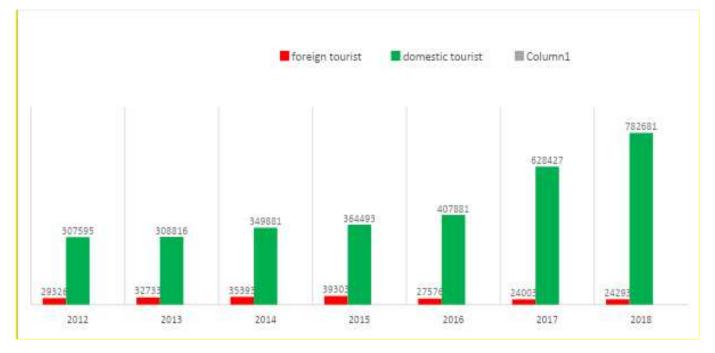
Table No: 3 shows that the number of commercial building in different panchayath in most of the commercial buildings is located in Adimalypanchayath and the second top commercial building is located in Munnar. And the day by day the number of buildings is increasing this area. In Munnar area the panchayath officials says that they are not providing permission to constructing building in this area but the illegal constructions are rampant in Munnar area.

Road is the only means of transportation to this beautiful place. Day by day there is a tremendous increase in the number of foreign and domestic tourists visiting the place. Tourism has brought ecological and geographical changes to the area. The accommodation facilities in Munnar area are very large in number. Most of them are resorts, residencies, hotels and service villas. More than 115 licensed residencies and resorts are available in Munnar, Adimaly and Devikulam area. At the same time there are lots of unauthorised small and big hotels and cottages present there. Most of them are located in Munnar and Devikulam area. Most of the hotels and resorts were asking different rate of amount from the customer depending on season. More than 30 food production units, lots of bakery and street foods (Thattukada) are available in Adimaly and Munnar area.

Table No: 4

year	Ν	Aunnar	Athirappally		Chalakkudy	
	Forei	Dome	Foreign	Domest	Foreign	Domestic
	gn	stic		ic		
2012	29326	307595	3260	365397	786	44838
2013	32733	308816	4984	395975	449	47421
2014	35393	349881	5177	361725	436	35349
2015	39303	364493	3746	153267	NA	NA
2016	27576	407881	2225	168547	22	12670
2017	24003	628427	1978	181941	29	13296
2018	24293	782681	2119	187812	116	14846

Eco tourism data


Tourist visitor's data Munnar

Source :(Research, Kerala tourism department)

Table No 4 shows that there is a rapid increase of foreign tourists till 2012 to 2015 and then a decrease happened in the flow of visitors till 2018 but the domestic tourist visits were increasing day by day. In Athirappally, the foreign tourist arrival was in an increased rate till 2015 after that a small decrease happed in the foreign visits. But the table shows that the domestic tourist arrival is increasing every year. This is shown below in the graph No 1.

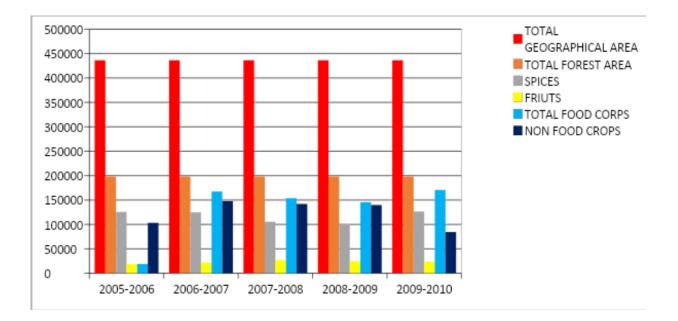
Graph No: 1

The unstructured development of tourism has brought out adverse impacts on the natural environment which is the foundation for the tourism industry in Munnar. Over construction on the rolling grass land ecosystem, lack of waste management techniques, deforestation, maximum utilization of resources, the profit motive, absence of holistic approach of tourism infrastructure development and land use pattern, lack of awareness among the tourism promoters, lack of visitor management technique, exceeding carrying capacity and disappearance of species diversity etc. adversely affect the biodiversity of the area

b) Impact of Plantation

Idukki is characterized by large area under Plantations. Land use changes in Western Ghats over the last century caused by agriculture expansion, conversion to plantations and infrastructural projects have resulted in loss of forest and grassland (Kumar 1993, Jha et al 2000, Khan et al., 1997). Considerable areas of forest have been converted to plantations in the Western Ghats, particularly of tea, coffee, and Eucalyptus and different species of Acaia. The area under plantations is large and growing. Tea plantations in the south Indian states increased by 17.7% in the period 1987-1998 from 74,765 ha to 87,993 ha (Tea Board 2002). Large areas of Eucalyptus and Acacia plantations also occur with tea as it is used as fuelwood for tea-curing in the factories. Extensive eucalyptus plantations have also been established by large tea companies and private farmers. Although tea gardens (14,000 ha) occupy one of the major cash crops in the project landscape it retain several interspersed forest fragments (largely shola) in varying size that act as corridor or sheltered habitat for many floral as well as faunal components of the biological diversity

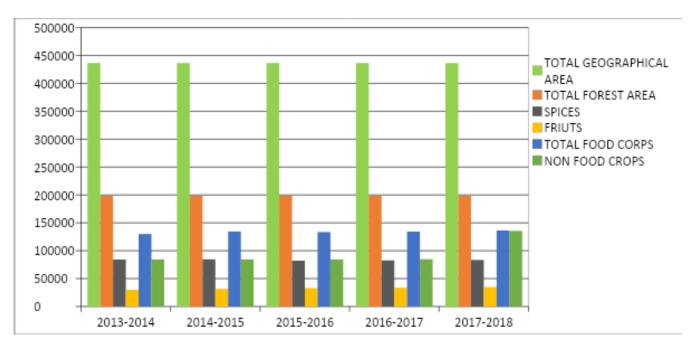
In 1877, Kerala Varma, the Raja of Poonjar, sold 227 sq.miles of Kannan Devan Hills to John Daniel Munroe, a British planter. This has led to the birth of Kennan Devan Hill Produce Company. KannanThevan is an adivasi who showed the hills to Planters and today Kannan Devan Hills is internationally known. In 1878, the Maharaja of Travancore confirmed the sale. J.D Munroe formed the North Travancore Land Planting and Agricultural Society. The members of the society developed their own estates in various parts of High Ranges. Tea was first planted by A.H.Sharp at Parvathi by clearing 50 acres on a dense forest. Later it was purchased by James Finlay and Company Limited. The Kannan Devan Hills Produce Company Limited and the Anglo-American Direct Tea trading Company Ltd owned 28 estates in these areas. The remaining 7 estates were owned by other British and Indian Companies. The present condition of the Munnar landscape most of the area is covered by tea plantation. The ownership of this plantation is mainly under the control of KDH company and Tata


company. Some of the small and large plantation are also owned by some other individuals most of the owners are from Tamil background. annually. The tea plantation area of the Idukki district is spread over Peermade, Udumbanchola and Devikulam Taluks. There are 36 tea estates, owned by 16 companies, in Peermade Taluk. Out of these, 30 estates run by 12 companies. These estates are spread over Peermedu, Vandiperiyar, Elappara and Upputhara panchayats.

c) Impact of agriculture

Most of the areas showed changed agricultural cultivation methods and most people are cultivating cash crops rather than food products. Most of the paddy cultivations in each panchayath in Idukki changed to different cash crops. Most of the areas in Idukki district are facing drought in summer season, at the same time in rainy season the people are facing flood land slide etc. due to the climate change, most of the paddy cultivation in Marayoor changed to sugarcane. The colder and higher areas of the landscape lying towards the east (Vattavada and Kanthalloor) have vegetable farming.

Comparing with 20 years back most of the area is under the process of changes. In Marayoor region, paddy was a major crop cultivated since the 18th century. But now the majority of the paddy lands were converted into sugarcane plantations. In Munnar most of the land is owned by KDH Company. They use this land for various purposes, like plantation, constructions, mining etc. every year they converting their own forest land to plantation, during the time of field work the team identified the conversion of forest land to jasmine plantation and rose plantation etc.


People mainly cultivate cash crops like Rubber, Catbarry Coffee, Tea, Coconut,Nutmeg, Arecanut etc. In Idukki district the main cultivations are spices. It includes pepper, cardamom, nutmeg, catbarry etc. This type of spices cultivations are increasing day by day. Cardamom Hills is predominantly moist evergreen forests and endured small-scale extraction of wild cardamom from long time ago. However, following the state monopolization of the cardamom trade in the early 19th century, major cardamom growing areas were notified as Cardamom Hill Reserve (CHR). In 2003, a portion of CHR was also gazetted as a National Park (Mathikettan). Cardamom cultivation requires both clearance of the understory growth and opening up of the canopy to enhance light penetration but such manipulation of the evergreen plant community results in the disintegration of the evergreen forest in a relatively short time.

Graph No 2 - Agricultural and non-agricultural productions in Idukki

The graph No: 2 represented the agricultural and non-agricultural productions in Idukki district

Graph No: 2 shows that from 2005 to 2010 a major increase occurred in the field of total food crop cultivation, during this time the non-food crop production decreased. During this time the spices cultivation always maintain the same amount every year

Graph No: 3 - Cultivation in various sectors in Idukki

Graph No: 3 shows that cultivation in various sectors in Idukki district from 2013 to 20018.Comparing with graph no 2 and 3 shows that from 2013-2018 the production was

totally changed. A rapid change occurred in the field of non-food crops area. The spices cultivation and fruit production in this time maintained the same. This increase in non food crops will affect the food security of the local community.

CARDAMOM HILLS

Cardamom Hills are located in south east Kerala and south west Tamil Nadu. They are named so because the major elevation of the hills is perfect to grow cardamom in large quantities, apart from pepper and coffee. The Cardamom Hills cover around 2800 sq. km. area with deep valleys including the drainages of west flowing rivers such as Mullayar, Periyar and Pamba. The hills join the Aryankavu pass in the north, Agasthyamalai Hills to the south, Palni Hills to the north east, and Anaimalai Hills to the north west. The crest of the Cardamom Hills forms the boundary between Tamil Nadu and Kerala. The cardamom Hills which form a salient bio-geographical area in the Western Ghats have played a significant role in the history of the world and human culture on earth. It is the original home of over 1720 species of flowering plants, 16 species of mammals, 91 species of reptiles and 84 species of amphibians. The forests of these areas are considered to be store house of many economically important plants. A number of medicinal plants, wood fuel plants, and Non- wood forest Products have evolved in this area. The wild varieties of many different crops like rice, sugarcane, black pepper, ginger, turmeric, etc., are also found in these jungles. There are also numerous orchids and balsams endemic to this area. The selection of shade trees and its regulation is considered as a vital process in cardamom cultivation. The shade trees like Karana, vayana, murikku, kanikonna, vaka, veetti, anjili etc. perform as a breeding site for bees which are the major pollinators of cardamom crop. Also, the leaf mulches of the shade trees protect the top soil as well as enrich the soil nutrients. Expert committee appointed by the Government of Kerala headed by V. Gopinathan, and by N. Chandrasekharan Nair had earlier warned the adverse ecological impact of clearing of undergrowth and shade regulation in CHR area. Extensive cultivation of eucalyptus and acacia trees in and around the cardamom growing tracts were started under the Social Forestry scheme to meet the increasing firewood and timber demand for the drying the cardamom. The timber was also used to feed the pulpwood factories. Large eucalyptus trees were planted in both private as well as forest lands especially at Kottakkambur, Vattavada, Nedumkandam Cheruthoni, Idukki and Kattappana areas. resulting in significant water shortage in these areas.

Cardamom

d) Impact of quarrying activities

Table No 5 shows the Details of quarries in Idukkidistrict

S.L	Code	Mineral	Rock type	Village
1	287	Granite(Building Stone)	Granite	KDH
2	288	Granite(Building Stone)	Migmatite	KDH
3	289	Granite(Building Stone)	Granite	KDH
4	290	Granite(Building Stone)	Granite	KDH
5	291	Granite(Building Stone)	Granite	KDH
6	292	Granite(Building Stone)	Granite	KDH
7	293	Granite(Building Stone)	Granite	KDH

Table No: 5

8	295	Granite(Building Stone)	Granite Gneiss	Keezhathoor
9	296	Granite(Building Stone)	Granite Gneiss	Keezhathoor
10	297	Granite(Building Stone)	Granite Gneiss	Keezhathoor
11	298	Dimension Stone	Pink Granite	Kanthalloor
12	299	Dimension Stone	Granite Gneiss	Kanthalloor
13	300	Dimension Stone	Pink Granite	Kanthalloor
14	301	Granite(Building Stone)	Migmatite	Kanthalloor
15	302	Granite(Building Stone)	Biotite Gneiss	Kanthalloor
16	303	Granite(Building Stone)	Migmatite	Anaviratty
17	304	Granite(Building Stone)	Migmatite	Mannamkandom
18	305	Granite(Building Stone)	Migmatite	Mannamkandom
19	306	Granite(Building Stone)	Migmatite	Mannamkandom
20	307	Granite(Building Stone)	Migmatite	Mannamkandom
21	308	Granite(Building Stone)	Migmatite	Mannamkandom

Table No: 6 shows most of the Quarries are located at Mannankandam village under Devikulam taluk in Adimaly panchayath

	Code	Mineral	Rock type	Village
1	309	Granite(Building Stone)	Biotite Gneiss	Mannamkandom
2	310	Granite(Building Stone)	Biotite Gneiss	Mannamkandom
3	311	Granite(Building Stone)	Migmatite	Mannamkandom
4	312	Granite(Building Stone)	Migmatite	Mannamkandom

5	313	Granite(Building Stone)	Migmatite	Mannamkandom
6	314	Granite(Building Stone)	Migmatite	Mannamkandom
7	317	Granite(BuildingSton e)	Migmatite	Mannamkandom
8	318	Granite(Building Stone)	Migmatite	Mannamkandom
9	321	Granite(Building Stone)	Biotite Gneiss	Mannamkandom
10	322	Granite(Building Stone)	Migmatite	Mannamkandom

The study Impact assessment of flood/ landslides on biodiversity and ecosystem of Idukki district conducted by Kerala State Bio Diversity Board shows that Udumbanchola, Mariyapuram, Vazhathoppe, Adimali, Kanjikuzhy, And Kamakshi panchayath areas faced severe damage in private sector and the main plantations affected are Cardamom, Rubber, Pepper, Coffee, Cocoa, and Tea. The restoration of these sectors will take a long time. This data shows that Adimalypanchayath is one severely affected areas so there is need to investigate whether at there is any connection with the impact of quarrying and landslide. The impact of quarrying activities leads to lots of complications to the environment. it will lead to biodiversity loss, air pollution, water pollution, noise pollution, contamination of ground water and surface water, soil erosion,

The leakage of chemicals from qualifying sites can also have detrimental effects on the health of the population living around the site. The landslides were severe in hilly districts like Idukki, Wayanad etc. During the monsoon season due to the blasting of rock soil erosion may happen and it also leads to landslides, land degradation, etc. During the time of blasting it will create noise pollution and air pollution. The quarrying activities also affect the bio diversity because it will destroy the habitat of different species of flora and fauna. It also leads to loss of fertile topsoil.

c) IMPACTS OF HYDEL PROJECT

Small and giant Hydel projects dams in Idukki district are constructed in large number. The main focus of constructing dams is maintaining the electricity supply for different purpose.

Most of the dams can store a huge amount of and is also used for hydal tourism like boating, fishing and the stored water also provide habitat for flora and fauna. The water is also used by people who live near side the dams for their daily needs. Dams raise the natural level of rivers, so flooding lands previously settled, farmed or periodically grazed. Dam construction results in the loss of productive land beneath the reservoir.

The main micro and macro dams in idukki district are listed below.

IDUKKI DAM

The IDUKKI dam is one of the biggest arch dams in Asia, at a height of 555 feet between two mountains – Kuravanmala and Kurathimala

ANAYIRANGAL DAM

The Aanayirangal dam is one of the biggest earth dams in Asia, situated 22 kms away from Munnar (closer to Chinnakkanal). Only rock and sand used for the construction of this dam. At season the water will fill around 34km perimeter. It is surrounded by Tata Tea plantations, coffee, tea and cardamom plantations in the evergreen forests. Hanging bridge connects tea plantations on opposite sides.

CHERUTHONI DAM

Cheruthony Dam is a 138m tall concrete gravity dam. This dam was constructed as part of the Idukki Hydroelectric Project along with two other dams at Idukki and Kulamavu. It is built across the Cheruthoni River, which is one of the major tributaries of the Periyar River.

The water impounded by these three dams of Idukki, Cheruthony and Kulamavu has formed a single reservoir spread over 60km on a height of 2300 ft above Mean Seal Level and the water stored, is used for production of electricity at the Moolamattom Power house.

The spill way of the Idukki Reservoir is in the Cheruthony dam. Cheruthony is the largest and highest gravity dam in Kerala. (http://idukki-district.com/dams-in-idukki/)

KALLARKUTTY DAM

The Kallarkutty Dam was constructed in 1961 as the part of Neriamangalamhydro electric project across the Muthirappuzha River. It is a gravity masonry dam, with a reservoir spread about 0.648 sqkm and has 6.88 million cubic meter capacity. (http://idukki-district.com/dams-in-idukki/)

KOCHU PAMBA DAM

Kochu Pampa is in the boarder of Idukki- Pathanamthitta District.

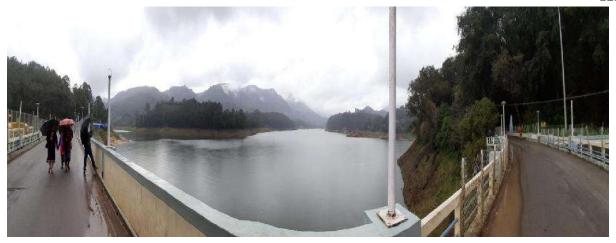
KULAMAVU DAM

Kulamavu Dam, one of the three dams of Idukki Reservoir Project, is situated at Kulamavu a famous hill station in Idukki District. The Dam is constructed in 1961. Kulamavu Dam was constructed to prevent the water escape through a rivulet called Kallivally, 30 km west to Idukki Arch DamKulamavu extends between rocky hills to form the 33 sq km reservoir.

KUNDALA DAM

Situated at 1700 Mtr above sea level, Kundala Lake is located at 25 Km away from Munnar on the way to Top Station, located amidst a dense forest. The construction of Sethuparvathy Dam at Kundala was completed in the year 1946, as a part of Pallivasal Hydro Electric Project, when it was found that the reservoir at Munnar was not getting adequate water. Kundala Arch Dam is Asia's first Arch Dam.

LOWER PERIYAR DAM


Lower Periyar Dam is the part of Lover PeriyarHydroelectric project.

MALANKARA RESERVOIR

Malankara Reservoir is located at a distance of about 6 Km from Thodupuzha,

MATTUPETTY DAM

The dam of Mattupetty is a storage concrete gravity dam. The surface area of the dam is 323 hectares.

Mattuppetty dam panorama view

MULLAPPERIYAR DAM

The Mullaperiyar Dam is a masonry gravity dam built on the Periyar River in Kerala. The dam is located 2889 feet above mean sea level on the Cardamom Hills of the Western Ghats in Thekkadi, Idukki District. The Periyar National Park in Thekkady is located around the dam's reservoir. The dam is located in Kerala on the river Periyar, but is operated and maintained by Tamil Nadu state. Although the Periyar River has a total catchment area of 5398 km2 with 114 km2 in Tamil Nadu, the catchment area of the Mullaperiyar Dam itself lies entirely in Kerala.

MUNNAR HEAD WORKS DAM

RamaswamyIyer headworks dam is one kilometre away from Munnar town

PONMUDY DAM

Ponmudi Dam in the Idukki District is constructed across the Panniar River, a tributary of the Periyar. The dam is about 15 km from Adimali, on the way to Rajakkad.

Now a day's one of the issues found due to boating as part of hydal tourism is that most of the water are contaminated due to the oil leakage so some animals like elephant and other animals hesitate to drink this water and boating here also make noise problems and pollution in this area. During the field trip the team identified that due to tourism in hydals area the tourist also throw plastic waste and other waste products in the water and the near side the area. As part of that the Forest gazette published by Devikulam range in the Aanayirangal dam area boating in the dam has been restricted.

Boating in Aanayirangal dam area

Aanayirangal dam area.

Area of forest submerged due to each dam and people relocated

Kerala has sixty river valley project sites, half of which are hydel and the other half were irrigation dams. The hydel dams have all come up in the forested hill areas in Western Ghats and the irrigation dams are located amidst the foot hills, both submerging large tracts of forests and fertile valleys. After the construction of large dams in many forested areas in Kerala, the adjacent catchment forests have been declared Wildlife Sanctuaries. The Periyar Tiger Reserve, Neyyar, Peppara, Chenduruny, Parambikulam, Peechi – Vazhani, Chimoni and Idukki Wildlife Sanctuaries are all protected areas in the catchments of river valley projects.

Most of the tribes meet their livelihood from the forest areas. Due to the reallocation and construction of dams they lost the freedom of fishing, hunting, and gathering in the previous settlement. The available data about the forest submerged and people relocated due to the construction of Idukki dam and the pooyamkutty hydal project is as follows.

Among the 1394 families affected by the Idukki dam, many were tribals and three villages namely Ayyappankoil, Kanjiyar, and Vairamony were completely submerged by the dam.

Protected Areas in the Catchments of Dams in Kerala

	Protected Area	Area (Sq. Km.)	Year
•	Idukki	70	1976
•	Thattekad	25	1983

Source: Prakash (2002)

Number of Families / Persons Displaced by Water Resource Projects

Tabile 7

Name of the	Туре	Familie	Person	Source
Project		S	S	
Idukki	Hyde	1394	7388	Idukki
Hydroelectric	1			Hydroelectri
Project				c Project
Pooyamkutty	Hyde	184	773	KFRI,
Hydroelectric	1			Peechi.
Project				

Source: Source: Murickan et.al. (2003)

Impact of displacement due to development project

Aanayirangal dam

The oldest inhabitants of the poyamkutty river catchment area the Muthuvans, whose 50 scattered hamlets are in the submergible area

6.5. Conclusion

The initial study conducted showed that the development of the production sector has played an important role in the ecological changes that occurred in the Munnar landscape area. Year by year, the number of tourists in the area are on the hike, especially the number of domestic tourists. This has brought many changes in the ecology. Even though the Government gets a huge income from this sector, tourism has affected the nature adversely and caused problems too. Changes were happening in the agricultural area. The major plantations in the different panchayath of the Devikulam Taluk includes; Tea plantation, Eucalyptus plantation, Rose plantation and Jasmine plantation. The paddy cultivation is vulnerable in most of the panchayath. There is a shift in the cultivation especially from paddy to cash crops. Day by day, there are changes occurring in landscapes such as renovations and developments. More than 15 tribal settlements were visited during the fieldwork and the major issues facing the tribal population were listed.

Major findings

Population growth in Idukki :- The population growth in Idukki district decreased 1.7 % from 2001 to 2011 although from 1991 to 2011 census in Idukki district showed that a record increase of 7.03 percentage in total population growth.

Tourism: - Data shows that there is a rapid increase of foreign tourists from 2012 to 2015 and then a decrease in the flow of visitors till 2018 but the domestic tourist visits were

increasing day by day. In Athirapally, the foreign tourist arrival was in an increased rate till 2015 after that a small decrease happened in the foreign visitors.

Quarries: During the survey in 9 Panchayats it was observed reported that Panchayats in the study area is not giving license to quarries, but crushers are still working in most of the Panchayats especially in Adimali, Kanthalloor, etc. The owners of these quarries collect stone from other district and use this stone for crushing.

Number of dams: - There are more than 12 dams in Idukki. The available data regarding diversion of productive land for dams is from Pooyamkutty dam and Idukki dam. The Pooyamkutty dam site will submerge one of the most dense forests which includes 3000 hectors of lush vegetation including trees, vines, shrubs and creepers of every variety. During the construction of Idukki dam three villages namely Ayyappan Koil, Kanjiyar, and Vairamony were completely submerged.

Non food crops cultivation:- During 2005 to 2018 the cultivation of non food crops increased from 103,222 Ha to 135,519 Ha an increase of 31. 3%

Source of data

- Survey of India \rightarrow Topo sheet Of Idukki District
- Directorate Mining and Geology department →List of licensed quarries and crashers in Idukki district
- Directorate of Tourism department \rightarrow list of domestic and foreign tourist visitors in study area from 2002 -2018
- District industries Centre Cheruthoni -> List of all industries in the study area
- Forest headquarters \rightarrow working plan, forest gazettes etc.
- Soil survey department \rightarrow soil mapping data (progressing)
- Peera made development society
- Land use board \rightarrow 11 panchayath (study area boundary shape file, progressing)

REFERENCES

- 1. https://www.cbd.int/mountain
- 2. https://www.cbd.int/mountain/agenda21.shtml
- Mainpower NZ Limited v Hurunui District Council. Decision No. [2011] NZEnvC 384. 9 December 2011.

- 4. http://www.algaebase.org
- 5. https://mvnpanikkar.com
- 6. http://ucjeps.berkeley.edu
- 7. http://www.ijpab.com/form/2013%20Volume%201,%20issue%206/IJPAB-2013-1-6-77-83.pdf
- 8. http://www.iosrjournals.org/iosr-jestft/papers/vol4-issue3/F0433539.pdf?id=3760
- 9. http://indianecologicalsociety.com/society/wp-admin/pdf/F1.3.pdf
- 10. https://www.hbw.com/species
- 11. https://www.rufford.org/files/10399-1%20Detailed%20Final%20Report.pdf
- 12. https://www.google.com/amp/s/www.thehindu.com/news/national/kerala/survey-puts-nilgiri-tahr-popula- tion-at-1420/article18723761.ece/amp/
- 13. https://www.thehindu.com/thread/reflections/the-nilgiri-tahr-the-pride-ofmunnar/article25168869.ece
- 14. https://www.thehindu.com/news/national/tamil-nadu/Nilgiri-tahr-faces-threat-in-Western-Ghats/arti- cle11144732.ece
- 15. http://datazone.birdlife.org/species/factsheet/nilgiri-pipit-anthus-nilghiriensis/text
- 16. https://www.researchgate.net/profile/Nameer_Prof_PO/publication/255962881_Stropho cincla_Laugh-

ingthrushes_of_South_India_a_case_for_allopatric_speciation_and_impact_on_their_co nservation/ links/00b7d52105a566cf4a000000/Strophocincla-Laughingthrushes-of-South-India-a-case-for-allopatric- speciation-and-impact-on-their-conservation.pdf

- 17. http://aetos.kiev.ua/berkut/berkut21/ethology21.pdf
- MoEF (2009) India's fourth national report to the convention on biological diversity. Ministry of Environ- ment and Forests, Government of India.
- 19. IUCN (2012) IUCN red list categories and criteria: Version 3.1. Second Edition. Gland, Switzerland and Cambridge, UK: IUCN.

75

UNDP- India High Range Landscape Project (Munnar)

Expert Consultant Meeting – Minutes

Date: 12/03/2019

200

Time: 11:00 am to 3.30 PM

Participants:

Dr. S.C. Joshi IFS (Retd.), Chairman, KSBB

Prof. E. Kunhikrishnan,, Associate Professor (Retd.), Department of Zoology, University of Kerala, Thiruvananthapuram

Dr. Jomy Augustine ,Associate Professor and H.O.D, Dept. of Botany, St. Thomas College, Palai, Kottayam

Dr. V. Balakrishnan, Member Secretary, KSBB

Dr. Preetha N, Technical Associate, KSBB

Dr. Pradeep C.G, Technical Associate, KSBB

Divin Murukesh, Research Associate

Bindya A, Project Assistant

The meeting was chaired by Dr. S.C. Joshi IFS (Retd.), Chairman, KSBB . Chairman gave a brief overview of the project and the objectives were discussed in details. A tentative work plan including draft questionnaire for conducting FDGs were circulated. It was explained that the main objective was to develop a methodology for PBR preparation and incorporation of the major gaps identified in the PBR (Annexure). It was also noted that the documentation of process of creating standard PBR is also necessary. It was suggested that the PBR formats may be modified to incorporate all the necessary information. Meaning thereby that these modified formats should be finally fitted in recently prepared ePBR by NIC, Thiruvananthapuram. Therefore it must that UNDP team may interact closely as many times as required with NIC officials, particularly Dr. Kasthuri so that the modifications suggested by UNDP experts are made within the boundaries on suggestions limitations suggested by Dr. Kasthuri inorder to ensure that suggestions after field visit by UNDP consultants get adjusted in the e-PBR made by NIC. This is highly essential as KSBB has already developed an e-PBR after working with NIC for more than one year and utilizing about 9.9 lakhs of rupees on the finalization of ePBR format to make it user friendly and more useful by rationalising existing formats, simplifying some of them and adding certain new fields. Therefore, it is essential that UNDP expert team must discuss with NIC along with Dr. Preetha to understand how the new ePBR being suggested under the project (after standardising the methodology) could fit in the ePBR now being filled up by LSGs in coming months. This is essential to avoid any incompatibility issue with ePBR already made by NIC.

Member Secretary, suggested on focussing on supply chain and value chain of the tradable bio resource of the concerned panchayat. He pointed out that prioritising the areas is necessary otherwise huge volumes of data will be generated which will be difficult to handle. Accordingly it was suggested that key areas shall be bioresources having commercial potential and IPR for medicinal, food and nutraceuticals, biocultural practises. It was agreed that since the methodology will be implemented across the state while updating PBR certain thumb rules has to be developed for collection of information, identification of knowledge providers, for conducting FDGs, PRAs etc. Dr Kunhikrishnan pointed out several cases studies relating to the traditional knowledge practises relating to soil, resource use etc. It was suggested that a handbook will be brought out regarding incorporating the methodology and thumb rules. The work done during the 1st phase of the project was explained and it was decided to incorporate the data also in the present work and avoid duplication of work

Dr. S.C. Joshi concluded with opinion that as part of this project at least one model PBR will be developed and that data collection for PBR updation is a continuous process and suggested the experts to continue the discussion with the newly appointed team for field execution. The expert team suggested mapping of study area using GIS technique. It was also decided to conduct monthly meetings at Head office regarding the progress of the project.

As per the discussions the objectives were reworked as:

Objectives

- 1. Systematic Group wise and Taxa wise documentation and compilation of available information.
- 2. Documentation of the economically important plants, animals, microbes, insects etc., and supply chain, value chain of tradable bioresources .
- 3. Identification of the research and management priorities and recommend policy and plan initiatives for long term conservation of Munnar landscape.

Initial Action Plan

- In the first phase of discussion Prof. E. Kunhikrishnan suggested to collect secondary data of Birds, Butterflies, Reptiles, Odonate, fishes and Amphibians from scientific journals to find their type locality, endemism, IUCN category, scheduled category, and comments on its population status.
- As a by product of this categorisation, he pointed out the possibilities of upgrading the species if data deficient and the possibilities of incorporating it as notified species under Section 38 of BD Act
- Collection of existing data of flora and fauna using various resources such as E bird, forest department reports, surveys, ZSI, newspaper cuttings and photographs etc.
- Sampling sites are to be finalised with an objective of all representative locations of the study area. Altitude may also be considered while selecting the study location
- Dr. Jomy Augustine provided various sources and references on flora of the study area.
- It was suggested to get required permissions for the KSBB team from Forest department.
- The team planned for incorporating external resource persons in the respective fields for the upcoming field study.
- The team planned for a preliminary field visit on 29th March to 31st March 2019 (tentative).

Expected outcome: Development of standard methodology of it for preparation and upgradation of ePBR and development of at least one PBR as model PBR and its seamless incorporation in the ePBR created by NIC which is now going to be filled up by LSGs.

The meeting concluded at 3:30PM

Dr. S.C. Joshi TS (Retd.)

Annxure 2

MINUTES OF THE FIRST TECHNICAL AGENCIES MEETING FOR THE GOI-UNDP-GEF INDIA HIGH RANGE MOUNTAIN LANDSCAPE PROJECT

- The meeting with the Technical Agencies for the GoI-UNDP-GEF India High Range Mountain Landscape Project was held at Hotel Hycinth, Thiruvananthapuram on June 18, 2019 at 10.30 a.m. under the chairmanship of Dr. S.K. Khanduri, Senior Technical advisor, UNDP and Smt Padma Mahanti IFS, State Nodal Officer, as Co-Chair. The list of participants is attached as Annexure 1. At the onset, Shri Jerin Thomas Abraham, Project Officer from the Project Management Unit (PMU) welcomed all the participants and facilitated a round of introduction. Thereafter, the context was set by Anusha Sharma, Project Officer, NPMU. She gave an overview of the project and its deliverables.
- 2. The chairman apprised the committee of the immediate need to kick-start the various programmes and called for a coordinated effort between the various Technical Agencies and the PMU to ensure successful realization of the project outcomes. He then invited the agencies to present their work updates and concerns, if any.
- 3. The first presentation was made by Co-Investigator Dr. P. Balasubramanian, Senior Principal Scientist, Salim Ali Centre for Ornithology and Natural History (SACON), Coimbatore. He presented the updates on "Ecosystem requirements of Hornbills and assess the status and distribution of select mammals in Anchunad and adjoining landscape".
 - Dr. Balasubramanian reported that the Indian Grey Hornbill was not figured during the observation visits to Munnar landscape; other species figured include Great Hornbill, Malabar Grey Hornbill and Malabar Pied Hornbill; the species figured were categorized based on the forest types, protected areas and tree species; ideal location for nesting is Evergreen forest areas; *Macaranga peltata* was observed to be the favoured food plant of Malabar Grey Hornbill; Vazhachal and Thattekkad areas are in the first and second positions, respectively regarding the number of species located and that the hornbill breeding season is from January-April. He also explained a format of literature survey sample sheet. Further, he explained that

similar studies have already been conducted in Nilgiri and Anamalai, however in the Munnar landscape, studies have been conducted only in Vazhachal area. Hence the study is relevant to the project and the distribution map presented is relevant to the study since no such data is readily available. A list of mammals occurring in Anchunad landscape was also presented.

- In response to the presentation by SACON, the State Nodal Officer, Smt. Padma Mahanti, IFS, indicated that additional data on shifting of nests and changes in nest patterns will be helpful to have more insightful findings. She stressed on the need to understand the changes in breeding seasons, if any, in the post flood scenario. She also highlighted the need for detailed literature review and clarified that the field data should substantiate the purpose of the study. She also requested SACON to compare the change in hornbill population size, nesting pattern and nesting location with available literature.
- Shri Baiju Krishnan, Assistant Conservator of Forests, Department of Forest and Wildlife, suggested to analyse the regenerative status of associated species. He also suggested to undertake local migration analysis using invasive molecular tools, to which SACON replied that molecular aspect is not built in the project and may not be possible.
- The Chairman commented that there is a need for preparing a large mammals distribution map and specific data about the landscape. He further suggested SACON to focus on 1 or 2 species of mammals.
- The PMU clarified that the Project Results Framework mandates report on Nilgiri Tahr and Malabar Grizzled Squirrel. The PMU also requested SACON to map the threats intensity and device plans for threats and conservation management and effective monitoring of the protected areas.
- In response to the concern raised by SACON regarding clarity on project area, the State Nodal Officer clarified that more prominence is to be given to the landscape units rather than the administrative divisions.
- > The constraints raised by SACON include the non-availability of adequate population data, limited literature review available for certain species and

ambiguity regarding the Terms of Reference. They also committed that the distribution map would be prepared once the entire landscape is covered.

- 4. The second presentation was made by Dr. Udaya S. Mishra, Professor, Centre for Development Studies and Consultant with the Kerala Institute of Local Administration (KILA) on the "Creation of benchmark for socio-economic database".
 - The data presented was primarily descriptive in nature based on the previous studies. Creation of benchmark for socio-economic database for concurrent evaluation and understanding the effectiveness of sustainable resource governance in the landscape is the major focus of the study. A comparison of 11 Grama Panchayats in terms of work participation rate, gender composition in Agri and Non-Agriculture Livelihoods and SC/ST demographics was presented. Other important aspects discussed include migration and climate change in Munnar landscape based on the rainfall changes over a period of 6 years. Dr. Mishra added that the comparison of a period of 15-20 years of rainfall data is required to depict the significant changes.
 - The Chairman stated that there could be variations in the Munnar landscape from Idukki district in general. Hence, there needs to be more focus on the economic activities in natural resource sector, livelihoods pattern and financial inclusion in the Munnar landscape specifically. Regarding access to markets, he suggested to include subsistence-based livelihood analysis.
 - The State Nodal Officer suggested KILA to undertake impact study and alteration reasons for drift in female to male work participation. She also requested KILA to include temporal profile change of population characteristics and economic characteristics and record whether the profile change is in response to natural changes; prepare database on subsistence-based and commercial activities; document the history of landscape with respect to landuses, landscape and migration and record livelihood patterns of new generation, which is not dependent on tea industry. She indicated that gender composition in the work participation rate is an important aspect to be studied further.
 - The PMU added that a stock assessment of contemporary issues at the panchayat level regarding the patterns of revenue, migration, tourism and unemployment over

two decades could give a comprehensive picture of the socio-economic scenario in the project landscape. PMU also stressed the need to record the livelihood patterns of the new generation in the project landscape, not dependent on the tea industry.

- Proposed interventions by KILA intend to bring forth a comprehensive picture of livelihood patterns, indirect indicators of market dependence and history of the landscape.
- ▶ It was decided to convene a separate meeting of KILA with the PMU.
- 5. Dr. Jibini V. Kurian from KILA further presented the updates on "Social change among Tribes – trajectory of development – focus on Edamalakudy". They proposed the tools to be used for the study and informed that 20% of the total households (874) would be considered for the sample survey.
 - The Chairman suggested that there is a need for focusing on the cultural history and detailed review of literature is needed.
 - The State Nodal Officer pointed out that effect of cardamom cultivation on the socio-economic framework needs to be included and that the newly introduced high yielding varieties of cardamom and its impact on the forest fragmentation is to be studied in detail, since there has been a shift from collectors and gatherers to agriculturists. She asked KILA to elucidate the impact of introduction of high-yielding variety of cardamom on the socio-economic fabric. She also stressed the need to focus on the trend of indigenous cardamom variety being taken over by high-yielding variety by proxy planters. She further requested to explore the possibilities of system reversion and restoration of gene pool; undertake specific review of literature as a prerequisite for the study; focus on migration of Muthuvans and its economic implications and also on fragmentation due to roads, total electrification, etc. and clarify on end-market for produce.
 - Shri Baiju suggested to explore socio-economic effects of man-animal conflicts and assess the degree of change in forest dependence.

- The PMU suggested that higher focus may be placed on life and livelihoods; dependence on the forest-based livelihoods; change of food habits over the period; status on the use of traditional knowledge and the influence of proxy planters.
- 6. The third presentation was made by Team Leader, Shri C Dinil Sony, Senior Principal Scientist, Centre for Water Resources Development and management (CWRDM) on "Hydrological Investigations in the High Range Mountain Landscape, Kerala."
 - The presentation was based on proposed outcomes such as hydrological investigations in high range landscape, water availability, estimation of water demand, preparation of water resource management plan and technical support to LSGIs. He explained that the Government water schemes are based on the spring/streams-based water sources and water availability is adversely affected during the summer season. Five water samples were reported to be collected from each location except Edamalakudy and three wards of Athirappilly, making a total of 597 samples. The highest pH value was reported to be obtained from ward 5 of Athirappilly (9.02) and the least value from ward 3 of Marayoor (4.52).
 - State Nodal Officer specified that 20% increase in the water quality is one of the indicators to be achieved by the end of this project and hence, other relevant factors influencing the water quality needs to be focused in detail; post flood scenario is to be taken into consideration and the audit of available structures and the ones clogged post flood needs to be taken up. She reiterated that CWRDM is expected to come up with specific recommendations towards the achievement of the desired outcomes.
 - The Chairman indicated that there is a need for checking the availability of watershed maps and the data regarding the ground water/other water resources.
 - The PMU stressed on the requirement of GIS maps indicating the water sources and possible infrastructure that require renovation in the landscape at the earliest. PMU further explained that the project aims to develop one demonstration model in each panchayat and therefore, among the 11 Gram Panchayaths, at least one structure each requiring renovation needs to be identified scientifically within this year to

initiate implementation. Also, the PMU requested support for determining the causes of pollution and devising remedial measures for the revival of Nallathanni River.

- 7. The fourth presentation was made by Principle Investigator, Dr. R Jayaraj, Scientist, Kerala Forest Research Institute (KFRI) on "The pattern of usage of pesticides and their impact on the ecosystem of plantations and adjacent areas in the GEF Munnar Landscape project area". He explained that the study focuses on the major cropping systems in the project area and pattern of pesticide usage in the region, analysis of various potential pesticide residues in different matrices and effect on the environment and fauna. He further informed that the sample collection strategy would be random sampling method.
 - The State Nodal Officer requested to specify the end results of the study. In response to this, the Principal Investigator indicated that there is extensive use of pesticides in tea estates in the landscape and recommendations for sustainable practices could be stated. However, the Principal Investigator opined that adoption of such practices by the tea estates may not be practicable due to various other factors.

The Chairman suggested to include more data from the impact areas and stressed on the need to focus more on sustainability and conservation. He suggested to collect more samples from downstream and compare with forest near plantations and forest in upper reaches. With regard to studies on animals, The Chairman requested to strategize sample collection from road kills, natural death, etc. in coordination with forest officials.

- Shri Baiju suggested to focus on pesticides proposed to be banned or alternatives suggested for recommendation to government.
- The PMU suggested to formulate mitigation plans / best practices for pesticides across India.
- The Chairman requested KFRI to focus on sustainability of crops subjected to pesticide use and deduce means to mainstream conservation in production sectors.

- Dr. V. B. Sreekumar from KFRI further presented the updates on "Study on diversity and current status of fish and fisheries in GEF-Munnar landscape project area". The presentation focused on the fish species and biodiversity pattern and reported that 53 fish samples were collected from 15 field surveys and 61 species of fishes were identified, including. critically endangered (02), endangered (09), vulnerable (06) and near threatened (01). The need to study the adverse effects in the Chalakkudy region due to the floods were highlighted. It was also informed that pre-flood data is not available. The highest number of fish species were reported to be identified from Athirappilly (49 species), followed by 25 species from Kuttampuzha covering the Pooyamkutty and Edamalayar. The interlinkage of migratory birds and fish fauna in Thattekad and the lack of sufficient literature on this topic from the project landscape were also highlighted. Further, general findings such as community fishing from dam areas such as Gundala, Mattupetty and Athirappilly areas were presented.
- The State Nodal Officer suggested to study the changes in fish diversity pre and post floods, wherever it is applicable. She stressed on the need for recommendations towards regenerating or reintroducing the indigenous varieties. She also asked to elucidate the dependence of local community on fishing, taking into consideration the impacts of introduction of exotic species. She further suggested to explore any shift in fish species post flood, analyse pre-flood and post-flood scenario and means of revival. She also requested to record the extent of invasive species in bird sanctuaries, since migratory birds are dependent on indigenous fish species.
- The PMU suggested to study the impact of the loss of riparian forests in the project landscape on the indigenous fish varieties.
- The Chairman requested the PMU to immediately follow-up the status of the proposal to study the impact of invasive alien species on ecology of GEF-Munnar landscape project area and adopt requisite measures to facilitate commissioning of the study on urgent basis.
- 8. The fifth presentation was made by The Kerala State Biodiversity Board (KSBB) on "Documentation and compilation of existing information on various taxa (flora and fauna), and identification of critical gaps in knowledge in the GEF-Munnar landscape

project area." KSBB identified several gaps in maintenance of People's Biodiversity Registers (PBRs) in the panchayats and reported that the Biodiversity Management Committees (BMCs) are ineffective in the project areas. Another finding reported was pertaining to the overexploitation of medicinal plants and lack of awareness in Access and Benefit Sharing (ABS) was raised as a major concern. Trade analysis of Pinari, Karimkurinji, Marotti and Pachottitholi was shown in the presentation.

- The Chairman and the State Nodal Officer enquired whether sufficient literature was available from the project area. They suggested to focus more on the prominent bio-resources such as honey, jaggery etc. They also indicated that the project implementation should focus on the capacity building of BMCs and suggested KSBB to work in collaboration with the PMU. The State Nodal Officer further suggested to focus on the biodiversity heritage sites, documentation of traditional knowledge and its use in livelihoods and water conservation. In response to this, KSBB specified that only limited literature is available on tradeable bio-resource.
- The PMU suggested to focus on value-chain analysis of potential products like honey, jaggery, cardamom, etc. It was also decided to convene a separate meeting between the PMU and KSBB to device conservation strategies to protect the RET species and degraded forests.
- KSBB further presented the updates on "Review of ecological and development history of various sectors and changes in selected ecological units in GEF-Munnar landscape project area".
- The Chairman and the State Nodal Officer specified the need to source secondary information from earliest timeline available by reviewing Gazettes, old work plans and Reserve Notifications. They also requested to define the gaps in secondary data.
- Shri Baiju suggested to focus on vulnerable and endangered specific niches and habitats.
- 9. The following modalities were suggested by The Chairman and the State Nodal Officer to enable the smooth functioning and implementation of the project.

- Monthly review meeting between the Technical Agencies and the PMU by means of Skype calls/Video Conferences, wherein, the alignment of project activities with outcome may be reviewed.
- All studies should state necessary literature review and based on it the uniqueness of the study.
- The project deliverables may be reviewed by a group of experts, selected by the State Nodal Officer, State Project Director and PMU.
- Status of payment can be intimated to Principal Investigator and PMU.
- Project officers of PMU will be the point of contact of all Technical Agencies and all reports may be copied to PMU.
- For duplication check of project activities, as well to have better coherence with the Project objectives and outcomes, the PMU will share a template to the Technical Agencies for sharing information on the nature of work and data.
- Field visits in Munnar landscape will be facilitated by the PMU, upon prior intimation through the State Nodal Officer. Visits of various agencies to remote areas like Edamalakudy may be coordinated and calendar may be prepared for the visits.
- The second progress report may be submitted by the Technical Agencies to UNDP with copy to PMU, incorporating the comments and reviews of this meeting.
- 10. The Chairman thanked the committee members for their valuable presence and updates and requested a coordinated effort between the Technical Agencies and PMU to avoid duplication and facilitate implementation of the project.

List of participants of the first Technical Agencies meeting for the GoI-UNDP-GEF India High Range Mountain Landscape Project, held on 18.06.2019.

Sl. No.	Name, designation & Organisation	Contact Details
1.	Dr. S. K. Khanduri	9871800409
	Senior Technical Advisor, UNDP	skkhanduri57@gmail.com
2.	Smt. Padma Mahanti, IFS	9447979161
	State Nodal Officer	padma.mahanti@gmail.com
3.	Mr. Baiju Krishnan	9495201990
	Asst. Conservator of Forest	bk.letter@gmail.com
4	Dr. P. V. Karunakaran	9488115231
	Principal Scientist, SACON	karunakaran.pv@gmail.com
5	Dr. P. Balasubramanian	9442512938
	Senior Principal Scientist, SACON	balumayura@gmail.com
6	Dr. Udaya S. Mishra	9447056026
	Professor, CDS & Consultant,	mishra@cds.ac.in
	KILA	
7	Mr. Mahesh Ramachandran	82818277718
	Statistician, KILA	maheshr.nemom@gmail.com
8	Dr. Jibini V. Kurian	9871800409
	Faculty, KILA	drjibini@kila.ac.in
9	Mr. C. Dinil Sony	9447192202
	Scientist, CWRDM	dsc@cwrdm.org
10	Dr. Sreekumar V. B.	9446505286'
	Scientist, FE & BC Division,	vbskumar@gmail.com
	KFRI	sreekumar@kfri.res.in'
11	Dr. S. Sandeep	9495660212
	Scientist, KFRI	sandeep@kfri.res.in
12	Dr. R. Jayaraj	9496426424
	Scientist, KFRI	jayaraj@kfri.res.in
13	Mr. Riju P.	9747141235
	Project Fellow, KFRI	rijupnair2009@gmail.com
14	Mr. Shine Raj	9995346470
	Project Assistant, KFRI	shineraj1994@gmail.com
15	Dr. Preetha M.	9746819305
	Technical Associate, KSBB	preetha.nilayangod@gmail.com
16	Mr. Justin M. K.	9745214011
	Research Associate, KSBB	
17	Mr. Aneesh Kumar	9400364885

	Research Associate, KSBB	aneeshnair7799@gmail.com
18	Ms. Haritha M.	8281235606
	Project Assistant, KSBB	haritham.ppd@gmail.com
19	Ms. Anusha Sharma	7042143008
	Project Officer, NPMU	anusha.sharma@undp.org
20	Dr. V. P. Limna Mol	950051434
	Project Officer, NPMU	limna.mol@undp.org
21	Mr. Tony Jose K.	9048046980
	Project Officer, IHRML Munnar	tony.jose@undp.org
22	Dr. Rameshan M.	8086589460
	Project Officer, IHRML UNDP	rameshan.m@undp.org
23	Mr. Jerin Thomas Abraham	9497268508
	Project Officer, IHRML UNDP	jerin.abraham@undp.org
24	Mrs. Liji George	9496100303
	Project Assistant, IHRML	liji.george@undp.org
25	Mr. Zakeer Husain S.	9633563996
	Finance & Admin, IHRML	zakeer.husain@undp.org
26	Ms. Karthika S.	9400271171
	NUNV Cluster Coordinator,	karthika.s@undp.org
	IHRML	
27	Ms. Silpa P.	9809842108
	NUNV Cluster Coordinator,	silpa.pillai@undp.org
	IHRML	
28	Mr. Jobin Thomas	9961810806
	NUNV Cluster Coordinator,	jobin.thomas@undp.org
	IHRML	

KERALA STATE BIODIVERSITY BOARD

Meeting minutes June 26, 2019

Opening:

The regular meeting with consultative experts for the implementation of UNDP-HRMLprojects- (i) Documentation and Compilation of Existing Information on Various Taxa (Flora and Fauna), and Identification of Critical Gaps in Knowledge in the GEF-Munnar Landscape Project Area; (ii) Review of ecological and development history of various sectors and changes in selected ecological units in Gef-Munnar landscape project area.

was called to order at 11:00 AM on June 26, 2019 in the Head Quarters of Kerala State Biodiversity Board.

Present:

Dr. S. C. Joshi IFS (Retd.), Chairman, KSBB (Principal Investigator)

Prof. (Dr.) B. R. Reghunath, Retd. Dean, Agro biodiversity, Kerala Agriculture University, Vellavani

Prof. E. Kunhikrishnan, Associate Prof. (Retd.), Dept. of Zoology, University of Kerala, TVM

Dr. Radhakrishnan P., Director Project, Global Urban Canopy, Thrissur

Mr. Anand Zacharias, Scientist, MSSRF, Changanassery

Dr. V. Balakrishnan, Member Secretary, KSBB (Co-Principal Investigator)

Dr. N. Preetha, KSBB (Technical Associate)

Dr. S. Rajasekharan, Senior Project Consultant (only in AN session)

Mr. A. L. Aneesh kumar, KSBB (Research Associate)

Mr. M. K. Justin, KSBB (Research Associate)

Mrs. Haritha, KSBB (Project Assistant)

Miss. A. Bindya, KSBB (Project Assistant)

Presentations:

Aneesh kumar and Justin presented the activities done so far and major difficulties faced in the field level implementation. In between the presentation, chairman and other technical experts raised questions and suggestions were made for next level programme. The highlighted suggestions are listed below.

Key outcomes:

1

The key outcomes of the Study 1 based on discussions and the review meeting of UNDP are:

- 1. Data of flora and fauna of project areas Focus on threatened and endemic species.
- 2. Data of tradable bio-resources Focus on medicinal plants and threatened species.
- 3. Identification of areas of biodiversity importance (e.g. Areas where endemic species of Balsam are found).
- 4. Checklist of RET and endemic flora of Anjunad valley.
- 5. One of the most important outcome is to develop methodology for PBR upgradation. (This should be done as suggested in Technical suggestion point 2)
- 6. (Video and Success stories) of best practices related to Biodiversity conservation.
- 7. Checklist of Illegal (smuggling) and unsustainable bio-resources traded with emphasis on medicinal plants and threatened species.

- 8. Identification of bio-resources with ABS potential. Chairman suggested that this should be done after discussing with foresters, angadikada people, Vaidyans, tribal societies and other known sources as suggested by Dr. B.R.Reghunth in Technical suggestion point 9. Chairman in gist suggested to use all possible sources of information both secondary and primary after brainstorming on propable sources with the help of experts on the subject both of line department, stakeholders (Tribals, Tribal Cooperative Society, Angadikada, middle men, final consumers or traders etc.)
- 9. Documentation of the impact of landslides/ floods on selected ecosystems and Keystone/ Indicator species and suggest management practises based on this.

The key outcomes of the Study 2 based on discussions and the review meeting of UNDP are:

- 1. Spatial delineation of landscape-level changes in Munnar
- 2. Details on cultural, historical events and development activities that led to landscape changes
- 3. Documentation of agents that driven landscape changes; its impacts and root causes
- 4. Finally to suggest strategies of Sustainable development.

Technical suggestions:

- 1. Chairman pointed out that during identification of areas of biodiversity importance the criteria should include ecologically significant flora and fauna along with economically significant ones.
- 2. Chairman also pointed that social impacts and livelihood of natives will be worked in the area and developmental activities in the development sectors such as (i) Plantations & horticulture; (ii) Animal Husbandry; (iii) Tourism; (iv) Transportations and (v) Hydel (buffer zone impacts); (vi) Quarries (vii)Man-Animal Interactions (various Social-Rehabilitation Policies). In the plantation sector, the following subsectors can be prioritized, Tea, Cardamom, Eucalyptus, sugaecane, Fruit and vegetable crops; Rattans; Sandals. He also mentioned that the impact of swapping cultivation of tea to eucalypts and vise versa should be included in the study. In short Chairman emphasized for the second project a landscape level change ie. how different land uses have changed with increased tourism, conversion of CHR area into resorts, conversion of CHR areas into hardy cardamon crop after felling evergreen species, taking up cultivation on slopes, changing courses of rivers etc.
- 3. Chairman suggested that II study should ultimately be suggesting probable strategies for sustainable development of the area for future based on the changes, factors causing changes, all consequences.
- 4. Chairman pointed out that solutions for sustainable management also be included after the analysis of landscape changes regard to all the usually not captured details.
- 5. It was stressed that development of a methodology for updation of PBR should be a significant outcome. Essentially to identify and standardise the techniques of field level data collection through personal interaction with formal and informal tools with regard to all the usually not captured details. For identification of species/ varieties best possible software can be suggested after thorough search and study of existing software.
- 6. Kunhikrishnan Sir suggested that clarity about the selected Grama panchayath and study area should be there. Also, it was suggested that instead of 'Anjunad Valley' study area should be mentioned as 'Munnar Landscape'. Another suggestion is that

Periyar catchment area should be assigned as prime concern other than Chalakudy catchment area as all the 10 panchayath except Athirapally is coming in Periyar catchment. This is supported and agreed by the Chairman, KSBB. Dr.Kunhikrishnan suggested that landscape study should be based on (i) Riparian; (ii) Sholas and (iii) Grasslands. These are the fragile ecosystems which dramatically change the Munnar landscape. 20 years changes will be compared with the help of Satellite images.

- 7. Tribal's socio-economic activities and other life styles which include handicrafts and associated cultural activities should be considered, along with other missing details in existing PBR and how to capture them through a tool proof practical methodology. Methodology has to be discussed and standardised.
- 8. Categorization of RET list of flora and fauna should focus on two specific aspect (i) Economic significance and (ii) ecological significance.
- 9. Prof.(Dr).B.R. Reghunath suggested that data for tradable bioresources can be obtained from tribal societies. Prepare questionnaires and discussions should be focussed in to Tribal Co-operative sectors, Forest watchers, traditional practitioners etc. For collecting primary data related to the tradable bio-resources there will be practical difficulty in obtaining data from Angadi kada.
- 10. Soil information should be collected and soil maps obtained from Soil survey dept. / Panchayath/ agriculture Dept. / Land use board etc.
- 11. Mr Anand zakariya pointed that the soil texture is completely changed after the flood. So comparison study (Area in 10 years before flood; present; 10 years after flood) is necessary and can be used for wider area planning such as soil quality assessments and conservation in future.
- 12. Mr Anand zakariya suggested the identification of BHS with the help of free software 'MaxEnt' (from AMNH) which is used for modelling species niches and distributions. https://biodiversityinformatics.amnh.org/open_source/maxent/
- 13. Dr.V Balakrishnan pointed that encroachments/ Anayirankal/ Ecological issues related to legal and illegal quarries/ Natural disasters/landslides/climate change/soil&drainage problems should be studied under the sector Social-Rehabilitation Policies. And measuring the carrying capacity of protected areas will be helpful for analysing the tourism sector and thereby ecological issues.
- 14. Balakrishnan also pointed that Dynamic quantification of canopy architecture is needed for the characterization of Tree vigour should included the study.
- 15. FRAGSTATS: A software programme for spatial pattern analysis is recommended by Anand zakariya. Recently this programme is upgraded in to the ArcGIS 10 (Version 4.2). Dr Radhakrishnan also added additional points to this such as analysis of Batch processing/ Sampling strategies/ Structural and functional metrics/ Surface metrics/ cell-based metrics/ Patch-based metrics/command line execution etc. <u>https://www.umass.edu/landeco/research/fragstats/fragstats.html</u>
- 16. Dr Radhakrishnan suggested that dynamics and changes in landscape pattern over a time and landscape fragmentation can be analysed through patch analysis using satellite images and Geotagging of Bio resource should be included in this study. Study of Changes in Landscape ecology is necessary for developing management plan
- 17. Dr Radhakrishnan suggested that GIS based landscaping is more relevant in this study. For that purpose he recommended the data collected from Bhuvan, EarthExplorer and NRSC <u>https://bhuvan.nrsc.gov.in/bhuvan_links.php;</u> <u>https://earthexplorer.usgs.gov/; https://www.nrsc.gov.in/</u>

90

18. Radhakrishnan sir also recommended books (Principles of landscape ecology),(Assessing landscape changes & dynamics using patch analysis and GIS modelling) and research articles etc. for the landscape study.

Methodology/ Suggestion for achieving outcomes

- 1. Identification of BHS : Areas showing high genetic diversity in various Genus of plant and animal such as Andrographis and Orchids etc may be marked as Biodiversity Heritage Site (BHS). This can be done on the basis of PRA, RRA, Expert consultancy and analysis of images from free software 'MaxEnt' (from AMNH)
- 2. Checklist of RET and endemic plants: This can be done on the basis of secondary data, along with random field verification to confirm the ground situation.
- 3. Documentation of best practises of biodiversity conservation: This can be done on the basis of PRA and RRA after meeting identified best practioners on the basis of preliminary enquiries from foresters, aquacultural officials, Animal husbandry officials, research organizations, NGOs and other local knowledgeable persons
- 4. Illegal/ Unsustainable harvest : This can be done discussing with tribal collectors, local medical practioners, forest guards, Societies etc.

Some eg: Drosera peltata (Conservation status: Least concern), commonly called the Shield sundew/ Pale sundew, locally known as Azhukanni/ Kosuvettipullu/ Kocuvetti seen in higher altitudes (Marayoor) is illegally exported into foreign countries from the Thoothukudi Port. This species is used in Siddha and Folk medicine. However, its actual use is not reported. *Rhododendron* leaves and several *Mosses* are also illegally transported to various part of India and abroad. *Rhododendrons* are valuable species in horticulture as well as Montane ecosystem. Vagavurrai village contain several exotic *Rhododendrons* are found. Also, these areas are rich wild life (Elephants, Bison, Chevrotain, Sambars and Porcupine.

- 5. It was decided that instead of purchasing images to download landsat images of the years 1999, 2009 and 2019 for the purpose.
- 6. It is necessary to get toposheet (1:50000) of study area from the Survey of India.
- 7. The information available in Bhuvans portal thematic areas to be collected.
- 8. The major sectors to be considered are as (i) Plantations & horticulture; (ii) Animal Husbandry; (iii) Tourism; (iv) Transportations and road network (v) Hydel (buffer zone impacts); (vi) Quarries (vii)Man-Animal Interactions (various Social-Rehabilitation Policies).
 - i. In the plantation sector, the following sub-sectors can be prioritized, Tea, Cardamom, Eucalyptus, sugarcane, Fruit and vegetable crops; Rattans
 - ii. Land occupancy and Encroachments and impact of KPT Act amendments can be included in Land Policy.
 - iii. The details of licensed quarries can be obtained from Mining and geology and revenue department. For details of existing and abandoned quarries and unauthroized quarries primary data collection will be required.

Meeting concluded at 5:15 PM. The next meeting will be conducted on the upcoming month.

Minutes submitted by: Dr. N. Preetha, KSBB (Technical Associate)

Chairman, KSBB

<u>Annexure IV</u>

Trade survey

1	Local name of the plant
2	Habit
3	Wild/Cultivated
4	Habitat
5	Part used
6	Dried/ Fresh
7	Distribution Status
8	Changes in abundance of the plants for the last 10 years
9	Processing details
10	Used in single/Combination
11	Is it sold
12	Quantity sold per day/month/year
13	Amount collected per year
14	Buyers
15	Price/kg
16	Condition of the plant sold (Dry/Fresh)
17	Brought to the Market (daily/ Weekly/ Monthly)
18	% of the people in the area doing the business
19	Availability
20	How much sold now as compared to the last 10 years (more/ Same/ Less)
21	Why? (less available for harvest/any other reason)
22	What kinds of Traditional methods are being used for the processing after harvesting
23	What are the problems faced in this business
24	Any other uses

Annexure VI

Questionnaire for BMC members

- 1. What are the major tradable bio-resources in that panchayath?
- 2. As a BMC member have you ever notice the vulnerability of tradable bio-resources in your locality?
- **3.** Have you ever notice the increasing trend of replacing the commercial crops instead of the natural resources?
- 4. What are the major programmes organized by BMC for the protection of tradable bioresources?
- 5. Who are the collectors of the tradable bio-resources? (Private industries, forest department or individuals)
- 6. What are the changes noticed the bio-diversity during the recent 10 years?
- 7. Do you think that the tradable bio-resources get affected adversely if this situation prevails?

If yes, what are the steps will you take to overcome that situation?

- 8. Do you think that there is a possibility of tradable bio-resources to get extinct is the prevailing situation lasts for the next 10 years?
- 9. Is there any limit for the collectors for the quantity of collected tradable bio-resources?
- **10.** Have you noticed the over exploitation of natural resources for the profit of the individuals?
- 11. Thus the BMC members collect levy from the sellers of tradable bio-resources?
- 12. If no what are the reasons for that?
- 13. What is the current status of the utilization tradable bio-resources?
- 14. Have you updated the validity of PBR for tradable bio-resources?

Annexure V

Major identified gaps in PBR

1	Tribal knowledge/Traditional knowledge
2	Traditional practices
3	Corrections or modifications in existing information if any required.
4	Commercially traded bio-resources and details of various agencies involved and
	nature of market.
5	Sacred groves/ponds
6	Major ecosystems/degraded ecosystems/quarries
7	Unique ecosystems as Mangroves, laterite hills etc
8	Riparian diversity
9	People Scape
10	Soil and related information
11	Areas which can be proposed for BHS
12	Areas which can be proposed for Miyawaki forests
13	Wetlands data
14	Endemic/ local landraces for GI registration
15	Prevailing management practices/ Community conservation.
16	List of local Vaidyas/ Hakims/ TK holders

Annexure 7

QUESTIONNAIRE

1. Name of the panchayath:

2. Name of the Village:

3. Name of the Farmer:

4. Religion of the Farmer: H /M /C /O

5. Cast: OC /BC /SC /ST

6. Total family members:

7. No. of People engaged in Agriculture:

8. No. of Labour using per hectare:

9. Total Agricultural land of the farmer: Acres / Hectares:

10. Land under cultivation:

11. Land under different crops:

Crop	Area	Yielding	Crop	Area	Yielding	
a.			e.			
b.			f.			
С.			g.			
d.			h.			
12. Land under Irrigation:						
13. Land under fallow:			a. Current fallows:		b: Other fallows:	
14. Land under common agriculture:						
15. Land under Fruit crops:		A:	В:	C:		
16 Land under Permanent Grass lands:						
17. Number of farm animals:						
18. Number of Draught animals:						
19. Poultry:						
No Yiel	ds:					

20. Milk animals:	a. Cows:		b: Buffalos:		
	Yields:		Yields:		
	c. Goats:		others:		
	Yields:		Yields		
21. Number of fertilizers are using for cultivation:					
Which are they?	а.	d.			
	b.	e.			
	с.	f			
22. When compared to the p	ast, the availability of w	vater is less:			
yes		No			
23. We cultivate vegetables organically at home:					
yes		No			
24.Do you believe that the su	udden climate changes	are due to the deeds of ma	nkind?		
yes		No			
25.We are forced to use chemical fertilizers for cultivation:					
yes		No			
If agree description:					
26. Do you think that the illegal quarries in your area causes landslide?					
yes		No			
27.The last year flood caused you a lot of damage:					
yes		No			
28. Does the development of tourism beneficial for you:					
yes		No			
29. The harassment of wild animals is increasing year by year:					
Yes		No			
If yes which animals:					
Description:					

30. Tourism in your area results in pollution:

Yes	No			
31. Do you believe that tourism helped you to increase the life status?				
Yes	No			
32. Tourism led to increased life expenses:				
yes	Νο			
33. The development in tourism in your area causes the flow of many vehicles to the area:				
yes	No			
34. Since 10 years, there were lots of developments taking place in your area:				
yes	No			
35. According to the reports, there were many people migrating to your area:				
yes	No			
36. You have noticed many unlicensed quarries coming up in your area				
yes	No			
37. You like people coming to visit your area as a part of tourism:				
yes	No			
38. The plantation sector helped the people in your area with job opportunities:				
yes	No			
39. The flow of tourists in your area gave more job opportunities to the people:				
Yes	No			

Annexure 8

Kerala State Biodiversity Board

<u>Two Day Consultative Workshop – Developing Standardized Protocol for biodiversity</u> <u>Survey through Citizen Science for PBR Updation.</u>

Minutes

Opening:

Two day consultative workshop for developing standardized protocol for biodiversity survey through citizen science for PBR updation opened at KSCSTE, Pattom, Thiruvanathapuram on 10:30 AM, 21st November 2019.

Welcome speech was address by Dr. Chandramohanan, Member, KSBB. Dr. V. Balakrishnan (Member Secretary, KSBB) briefly introduced the consultants to the workshop. Dr. S.C. Joshi (Retd IFS), Chairman, KSBB delivered keynotes address.

Chairman's keynotes address:

Chairman pointed out that development of a methodology for updation of PBR should be a significant outcome. Essentially to identify and standardise the techniques of field level data collection through personal interaction with formal and informal tools with regard to all the usually not captured details. For identification of species/ varieties best possible software can be suggested after thorough search and study of existing software.

Significance of PBR by stressing at its grassroot level. Mentioned the format of PBR and the need for filling the gaps in the following areas such as BHS, Peoplescape, wetlands, management practises etc.

Overview of the workshop by Dr. V. Balakrishnan, Member secretary:

Member secretary had a brief talk about why PBR has developed in first place and its need for updation for developing an action and strategy plan for conservation and future references. MS pointed about the importance of associated knowledge that remained as the major gap in the previously developed PBR.

MS stressed that the potential beneficiaries of the workshop has to be citizens and the formation of ePBR should the based biodiversity survey utilizing citizen science.

MS introduced the existing format of PBR to the consultants. He also showed the layout of the developing ePBR.

MS discussed the issues regarding existing PBR- Lack of uniform replicable standardized protocol for survey of flora/ fauna/ecosystem, Lack of training tools for volunteers, Difficulty in data interpretation, available data which cannot be utilized for biodiversity monitoring/ management

Questions to be addressed - Who Are the Potential Volunteers? How Should Biodiversity Be Recorded? What is the methodology for Field survey for flora and fauna and associated knowledge to be adopted for a citizen science project? What is the methodology for Ecological survey for identification of Biodiversity rich site? What Should Be Recorded? How Can Technology Support Recording? How to verify accuracy of data? How Should the Data Be Used to Produce Relevant Outputs? What are the training tools requirement for volunteers ? Finally MS showed the experts the reporting format to be submitted after group discussions. Lead talks by experts based on the use of citizen science for Biodiversity survey:

- 1. First lead talks by Dr. Bijikumar. A, Professor and Dean, Dept of Aquatic biology and Fisheries, University of Kerala. He pointed out various drawbacks in PBR and its methodology. He also suggested that :
- Collaboration should be needed between institutions (national and international) involving taxonomists and biodiversity experts.
- Developing trained manpower in biodiversity surveys, monitoring and preparation of repots/action plans
- Local/regional field guides and survey manuals on major groups and for local biodiversity surveys/rapid biodiversity assessments
- Prioritising work on HOTSPOTS and knowledge gaps
- Scientific work undertaken by common people, in collaboration with scientists and research institutes
- Electronic field guides (Required more for various groups- develops e-guides and circulate to all members in the team)
- Talk by Dr. T. Sabu, Program director, CED He suggested different methods to collect floristic data and analysis using citizen scientists.
- Proper documentation of biodiversity outside the protected areas needs capacity building and awareness creation of policy makers as well as common people
- Mentioned various tools for capacity building such as flowing plants of Kerala Software developed by Dr. N Sasidharan, KFRI, FRLHT ENVIS website to check medicinal value –Search facility Botanical/Vernacular name http://envis.frlht.org/bot_search, The Useful Tropical Plants Database contains information on the edible, medicinal and many other uses of around 12 thousand plants that can be grown in tropical regions. http://tropical.theferns.info/
- 3. Dr. Amitabachan K.H, Assistant professor, MES Asmabi college, he talked about indigenous communities, address their traditional right, instincts and also the livelihood dependence.
 - Ecosystem conservation, monitoring, ecorestoration and sustainable harvesting projects at GP level
 - Need a special design and format for long-term monitoring of specific function
- 4. Mr. Arun, ICFOSS, talked about Geospatial tools which can easily incorporated in the field of biodiversity. He recommended Open Street Mapping using platforms such as SYMBIOTA, odk (oldest version for user friendly).

- Dr. V.V.Sivan, MSSRF talked about Agrobiodiversity, he suggested that how to collect data from the field by means of different survey methods (Tansect walk, Household survey, Focus Group Discussion, Interview with KI) He proposed various criteria's to be recorded for Agrobiodiversity.
- 6. Dr. Rajasekharan, Senior consultant, KSBB and JNTBGRI, talked about Protection of Traditional Knowledge.
 - He mentioned the significance of TK, Integration of TK in to planning process for the various developmental activities at grass root level
 - TK related to art and culture, Agriculture, Animal husbandry, Architecture, Biodiversity conservation and utilization, eco-friendly practices, fisheries, forest and management, health care, medicinal and food plants, rural technology.
- 7. Mr. Roshnath Ramesh, MARC, explained about Bird Atlas, and it can be used as a citizen model and its protocol.

After these presentations, a brainstorming session to develop a standardized protocol of Biodiversity survey, for that three groups were formulated based on Flora, Fauna and Ecosystem. The format was circulated in each groups and final output was presented by Dr T Sabu, Sujith V Gopalan, Balakrishnan Valappil and Amithabachan. Dr Edison chaired the panel discussion that was held as a part of group discussion.

Vote of thanks by Dr. Sudheesh, Scientific Officer, KSBB.