

## SUBMITTED TO

 KERALA STATE BIODIVERSITY BOARD THIRUVANANTHAPUARAM

Dept. of Marine Biology, Microbiology \& Biochemistry School of Marine Sciences
Cochin University of Science and Technology cochin - 16

Final Project Report

# AGROBIODIVERSITY ENHANCEMENT PROGRAMME- STUDY ON BENTHIC FAUNA AND SOIL CHEMISTRY OF SELECTED WETLANDS IN PALAKKAD, KERALA 

February 2009 to February 2011

Principal Investigator

Dr. S. Bijoy Nandan

Associate Professor in Marine Biology
Dept. of Marine Biology, Microbiology \& Biochemistry
Cochin University of Science and Technology

Submitted to
KERALA STATE BIODIVERSITY BOARD, THIRUV ANANTHAPUARAM

## GOVERNMENT OF KERALA

# KERALA STATE BIODIVERSITY BOARD, THIRUVANANTHAPURAM 

Final Project Report<br>(February 2009 to February 2011)

## 1. Title of the project : AGROBIODIVERSITY ENHANCEMENT

 PROGRAMME- STUDY ON BENTHIC FAUNA AND SOIL CHEMISTRY OF SELECTEDWETLANDS IN PALAKKAD, KERALA
2. Period : February 2009 to February 2011
3. Name and address of PI : Dr. S. Bijoy Nandan With Phone no
: Associate Professor in Marine Biology
Dept. of Marine Biology, Microbiology \& Biochemistry
School of Marine Science, Lake Side Campus, Cochin
University of Science \& Technology (CUSAT)
Fine Arts Avenue, Cochin -6820 16
91-484-2368120, Fax: 91-484-2374164
\& 2532495, Mob, 9446022880, Grams: CUSAT
4. Name of Project Fellows : Akhilesh Vijay
5. Date of commencement : 20-02-2009
6. Date of Termination : 20-02-2011
7. Total fund allotted for the period (2009-2011) : Rs, 6,47,400/-

## TABLE OF CONTENTS

1. General Introduction ..... 4
2. Importance of the proposal in the National and International context - A review ..... 5
3. Objectives of the project ..... 7
4. Materials and Methods ..... 7
5.a Study Area ..... 7
$6 \quad$ Results and Discussion ..... 11
5. a Soil temperature and pH ..... 11
6.2 Oxidation Reduction Potential (Eh) ..... 17
6.3 Soil Total Nitrogen (STN) ..... 20
6.4 Available Nitrogen ..... 25
6.5 Available Phosphorus ..... 30
6.6 Sodium ..... 36
6.7 Potassium ..... 41
68 Calcium ..... 46
69 Soil Organic Carbon, Organic Matter and Energy Content ..... 50
6.10 Methane Flux ..... 57
6.11 Microbial Biomass (Total Plate Count) ..... 58
6.12 BIOTA ..... 64
Macrobenthos ..... 64
6. Salient Observations ..... 67
7. References ..... 69

## 1. General Introduction

Wetlands and agriculture are closely linked together, dating back to the prehistoric period. Both these systems are greatly influenced by mankind because of its high biodiversity and special environments, which human being relay on. Available evidence suggests that human settlements started in and around the wetlands, long before humans learned to grow food and they depended, at least partly on wetlands for their sustenance. Globally wetlands cover an area of about 530 million hectares, of which $78 \%$ are in tropical countries and in India it constitute to about 58.2 million hectares (Prasad et al., 2002). Of this, rice cultivation accounts for about $15 \%$ and provides staple food for about $40 \%$ of the world's human population. The concern for wetlands is rather recent only about three decades old. Until recently, wetlands were treated with contempt as wastelands, worthy of drainage and reclamation for agriculture and other land uses. Natural wetland, which lies at the interface between agricultural uplands and the deep open waters, act as recipients of sediments and agrochemicals and are known to regulate their flux to the lakes and rivers. The cycling of organic matter between the water and sediment phase is an important part of the productivity of the wetland at different levels. The paddy wetlands are man powered temporary wetlands which are subject to various disturbances. There is a continuous nutrient exchange in soil subsystem involving a number of organisms ranging from microbes (bacteria and fungi) to an array of macro invertebrates.

The Erumayur panchayat in Palakkad district has 400 acres micro-watershed wetland ecosystem, having hills on three sides with various agriculture and vegetation types. Hundred acres in the plains are used for paddy cultivation. It was proposed to convert 100 acres of the paddy wetlands in the area to organic farming type. So improving and restoring the biodiversity, through suitable practices would be ideal for improving the productivity of the system. Organic farming helps to improve the physical, chemical and biological properties of the soil and maintain the ecological balance as well as productivity of life supporting systems for furure generations (Raja Gopal and Sree Ramulu, 1999). Soil management practices that do not impair health and structure are pre requisites for achieving higher productivity and reduced cost of cultivation in agriculture. Dimitrov (1997) suggested that organic farming could be casily applied during transition period taking into account the limited resources of the country. The opinion varies greatly about the organic farming as part of sustainable agnculture. It has been called. organic farming which is a system of production that largely
organic farming strategies would- depend on long term whole farm systems involving all aspects of crop production that will maintain soil productivity and reduce dependence on chemical inputs. By definition organic farming is a production system which avoids or largely excludes the use of synthetically compounded, pesticides, growth regulators, and livestock feed additives. To the maximum extent feasible organic farming system rely upon crop rotation, crop residues, animal manures, legumes, green manures, off-farm organic wastes, mechanical cultivation, mineral bearing rocks, and aspects of biological pest control to maintain soil productivity, to supply plant nutrients, and to control insects, weeds and other pests.

The ever increasing attention is being paid to the environmental impact of intensive agricultural practices, and in this context organic farming is gaining recognition as a relatively friendly production system. In general, the risk of harmful environmental effects is lower with organic than with conventional farming methods, though not necessarily so. In this context the present study was undertaken in 100 acres of Padayati wetland in Palakkad to study the soil chemistry, benthic fauna as well as microfloral changes for a period of two years in the fertilizer as well as organic amended zones.

## 2. Importance of the proposal in the National and International context - A review

The "Convention on Biological Diversity" encourages the development of lectoologies and farming practices that not only increase productivity, but also arrest degradtion as well as reclaim, rehabilitate, restore and enhance biological diversity and monitor adverse effects on sustainable agricultural diversity. These include, inter alia, organic faming, integrated pest management, biological control, no-till agriculture, multi-cropping, mercropping, crop rotation and agricultural forestry"

The most common form of agriculture in wetlands is, however, paddy cultivation. Evidence of rice culture dates back to the earliest age of humans. Domestication of rice saned in shallow swamps, and probably independently in China, Thailand, and India. With the growing demand for food, seasonal marshes throughout South and Southeast Asia and in $\mathrm{Cl}=$ were modified into paddy fields as man-managed wetlands. The conversion of exemene mangroves (Sunderbans) in the Ganga-Brahmaputra Delta started at the end of the IE ${ }^{2}$ eemery by then the East India Company, which required the private landowners to clear
mangroves had been converted to rice fields. The pace of conversion got further accelerated, and though enormous deposits of sediments transported by the two rivers had resulted in the expansion of Sunderbans, $2,750 \mathrm{~km}^{2}$ of Sunderbans were reclaimed between 1880 and 1940 and another $5,230 \mathrm{~km}^{2}$ in the next 40 years (Reeve, 1997).

The changes in agricultural wetlands, such as paddy fields, depend upon the agricultural practices involving removal of plants other than the crop, water management, and the use of agrochemicals. In less intensive paddy cultivation, the paddy fields support large biodiversity and their productivity, taking into account that the production of all consumable biota is substantially high (Dimitrov 1997). Under intensive cultivation, the biodiversity is greatly reduced. Numerous studies have provided evidence of the positive role organic farming in both above and below-ground biodiversity, reduction of agricultural pollutants and the preservation and restoration of onfarm biodiversity. Long-term comparison with conventional agriculture systems demonstrated that organically farmed soils showed higher biological activity ( $30-100 \%$ ) and higher total mass of soil micro-organisms ( $30-40 \%$ ). Nitrate leaching rates on organic farms were shown to be significantly lower ( $40-64 \%$ ) and energy use to be more efficient ( $30-50 \%$ ) on a per hectare basis (FAO, 2002). Studies taking place between 1988-2001, comparing conventional and organic agricultural practices in both the US and UK have repeatedly shown higher levels of wild biological diversity (e.g. birds, arthropods, weedy vegetation and soil organisms) in organically managed farms (FAO 2002). The influence of organic agriculture and landscape diversity was further illustrated in over 30 separate studies contrasting organic and conventional farms in the UK between 1983 and 2000. The findings showed that organic systems consistently had higher levels of wild plants ( 5 times more biomass and $57 \%$ more species); arthropods, non-pest lepidoptera and spiders; and birds. In particular, $25 \%$ more birds were found at field edges, with $44 \%$ more in-field birds in the fall-winter, and higher numbers of breeding pairs of rare bird species

In an agricultural ecosystem, soil organic matter (SOM) and soil total nitrogen (STN) are the major determinants and indicators of soil fertility and quality, and are closely related ao soil productivity (Reeves, 1997; Susanne and Michelle, 1998). The reduction of soil organic manter and soil total nitrogen levels results in a decrease of soil fertility, soil nutrient supply, porosity, penetrability and thus soil productivity (Gray and Morant, 2003). From a perspective, soils represent an important terrestrial stock of carbon, holding approwimely 3 and 2 times as much as terrestrial vegetation and atmosphere, respectively
stocks (Janzen et al., 1997). The-dynamies of organic C in soils as affected by farming practices, to a great extent, affects the $\mathrm{CO}_{2}$ concentration in the atmosphere as well as even the global climate change (Knorr ef al., 2005; Tan and Lal, 2005).A better understanding on temporal and spatial variability of SOM and STN and related factors is important for improving sustainable land use management (McGrath and Zhang, 2003) and providing a valuable base against which subsequent and future measurements can be evaluated. In this context the breakdown of organic matter by soil microbial community and benthic organisms with its further recycling in the wetland soil is a crucial aspect of the soil productivity. The soil chemical characteristics also play an important factor that determines as well as that contributes to the abundance of organisms and productivity of the system. Therefore this study is unique in the Indian context where the benthic productivity in relation to its chemistry would be assessed in the context of different stages of the organic farming in a wetlands ecosystem. This study can be considered a model for other wetlands which are to take up organic farming practices.

## 3. Objectives of the project

1) To study the soil chemical parameters in relation to different farming practices.
2) To assess the composition, distribution and abundance of macro benthic fauna in soil samples.
3) To assess the microbial biomass (heterotrophic count) in relation to farming practice.

## 4. Field visit and sampling

Monthly field sampling for the collection and analysis of soil chemical parameters, fauna and bacterial biomass (Total plate count) from selected stations were undertaken July 2009 to October 2010 in Padayatti paddy wetlands of Palakkad formed the basis of the study.

## 5. Materials and Methods

## 5. a Study Area

The area sclected for the study was Padayatti in Erumayur panchayat, Palakkad, 400 acres of micro-watershed ecosystem with mostly paddy cultivation and also some negeable cultuation in the peripheral zone. From the 400 acre area a zone of 100 acres was
parameters, macrofauna and microbial heterotrophic biomass (Fig.1). St. 1 to 3 was under organic paddy cultivation, whereas St .4 was under cultivation using chemical fertilizers. All study stations were typical paddy wetland systems. The details on the latitude, longitude and area of the stations are given in Tablel. Traditionally the farmers in Padayatti area were cultivating paddy and vegetables using chemical fertilizers since the last two decades. But in carly 2009, the Kerala State Biodiversity Board lead an initiative to introduce organic farming practices in 100 acres of paddy cultivated area. It was in this context that, the present study was entrusted with CUSAT to monitor the soil quality and faunal characteristics in the ferrilizer as well as organic amended zones as indicated in Table 1.

The organic farming within the selected hundred acres of paddy fields was based on vermicomposting, leaf decoctions, and "Panchagavaya. The Panchagavya was locally prepared by farmers of Padayetti with the technical support of the State Agriculture Department. The constituents of the Panchagavya assortment were milk (2 litre), curd (2 litre), ground nut cake ( 1 kg ), tender coconut water ( 3 litre), banana ( 12 nos.), toddy ( 2 litre), cow dung ( 7 kg ), and urine ( 5 litre). The constituents were mixed and 1 litre of it was diluted to 10 litre and applied in the organic farming areas. The period of application of Panchagavya was for 25 days, 45 days, and 60 days, interval from the date of sowing paddy and its further growth.

The vermicompost was applied at rate of Itonne/acre, indigenously developed by the firmers of Padayatti, Palakkad. The leaf decoctions were made from locally available 5 varieties of plants and were applied, when there was any threat of pest attack on the cultivation.

The annual farming system consisted of early rice (July to September), late rice © November to January) and followed by summer fallow. The seeds commonly employed for cultivation were Navara, Aishwarya, Jothi, JST, 1001. The technical support regarding the application of organic manure, its periodicity and related aspects were provided to the farmer by the State Agriculture Deptmeant, Allathur as well "Thanal", a non-governmental onganisation approved by the Kerala State Biodiversity Board.

The soil for the analysis of benthos was collected using a standard corer, based on the procedure of Holme and Mc Intyre (1971) and APHA (2005). The soil samples were collected asig a standard corer of 5 cm diameter and 40 cm in length, for macrofauna. Suitable quadrate $\pm 25 \mathrm{~cm} \times 25 \mathrm{~cm} \times 45 \mathrm{~cm}$ size were also used to collect the benthic fauna from the study areas dipending on the seasonal changes. The benthic samples were preserved using $4 \%$ formalin.

Guina and those that are retained in the sieve were collected and preserved in formalin and stained in Rose Bengal for identification (APHA, 2005, Holme and Mc Intyre, 1971).

The sediment pH was measured using a Systronics make pH meter, NO.MR VI, whereas Eh was measured using Systronics make Eh meter, No.318. Calcium, sodium and potassium in the sediment were estimated using Flame Photometer (Systronics make No 128). Total and available nitrogen, available phosphorus, and organic carbon were analyzed based an standard procedures (APHA, 2005, Jackson 1973).

The organic matter was derived from organic carbon values (El-Wakeel and Riley, 1957), whereas the energy content was obtained from organic matter using an equivalent of $21.6 \mathrm{~J} / \mathrm{mg}$ dry weights (Barnes, 1959). The microbial biomass, mainly the heterotrophic and lotal counts were also determined (Alfred E Brown- Bensons manual 2001, APHA, 2005).

Location Map Showing Study Area in Padayatti, Palakkad Dist. Kerala


Fig. 1 Location map showing wetlands of Padayatti, Palakkad.
The benthic macrofauna were analyzed by hand picking and microscopic analysis. The shondard as well as published references were employed for identification of the different $5-9$ their generic or species level. (Holme and Mc Intyre, 2003, Fauvel, 1953 and aber published works).

The univariate \& multivariate analysis were done by statistical software's SPSS version 6. Primer 16.1 was employed for Bray-Curtis and non-metric multidimensional scaling to evaluate the variations in the parameters (Plymouth Routines in Multivariate Ecological Research).

Table 1 Details on study stations in Padayatti wetland, Palakkad.

| Station | Coordinates | Manure applications | Area (in acrev) |
| :---: | :---: | :--- | :---: |
| 1. Organic | $10^{\circ} 41^{\prime \prime} 057^{\prime} \mathrm{N}$ <br> $76^{\circ} 32^{\prime \prime} 829^{\prime} \mathrm{E}$ | Vermicompost, Panchagavaya, Organic <br> pest repellents etc | 0.60 |
| 2. Organic | $10^{\circ} 41^{\prime \prime} 085^{\prime} \mathrm{N}$ <br> $76^{\circ} 32^{\prime \prime} 856^{\prime} \mathrm{E}$ | Vermicompost, Panchagaraya, Organic <br> pest repellents etc. | 1.30 |
| 3. Organic | $10^{\circ} 41^{\prime \prime} 127^{\prime} \mathrm{N}$ <br> $76^{\circ} 32^{\prime \prime} 882^{\prime} \mathrm{E}$ | Vermicompost, Panchagavaya, Organic <br> pest repellents etc | 1.30 |
| 4.Chemical | $10^{\circ} 40^{\prime \prime} 902^{\prime} \mathrm{N}$ |  |  |
| fertilizer | $76^{\circ} 32^{\prime \prime} 777^{\prime} \mathrm{E}$ | Chemical manures like factomphose,Urea, <br>  <br> Chemical pesticides | 0.40 |



Plate 1 Sampling and study stations of Padayatti wetland, Palakkad.

## 6 Results and Discussion

## 6. a Soil temperature and pH

The soil temperature varied from an average of $28.00^{\circ} \mathrm{C}$ in the organic farming stations, to $28.4^{\circ} \mathrm{C}$ in the chemical application zone (St 4). The highest temperature was observed in March 2010 with a mean value of $34^{\circ} \mathrm{C}$ and lowest temperature of $21.6^{\circ} \mathrm{C}$ was observed in December 2009 (Fig.2). Soil pH is one of the most indicative measurements of the chemical properties of soil. The nutrient availability to plants and major chemical reactions as well as microbial activity was influenced by soil pH . In the present study, the average pH values were found marginally higher in organic amended stations as compared to fertilizer zones. Station wise analysis of the pH showed average values of 6.22 in st.1, 5.95 in $\$ \leq 2,6.11$ in st. 3 and 6.03 in st. 4 respectively (Fig. 3).

In St. 1 an average pH value of $6.22 \pm 0.55$ was observed. pH showed a lowest value of 525 in March 2010 and a highest value of 7.1 in February 2010, with a coefficient of variation ( $\mathrm{CV} \%$ ) of $8.67 \%$. The characteristic pH values showed that, pH was acidic to seatral in St.1. In St. 2 soil pH showed an acidic nature, with an average value of $5.94 \pm 0.61$ sta a highest value of 6.8 in February 2010 and a lowest value of 3.81 in September 2009, laving a coefficient of variation of $7.84 \%$. In St. 3, pH values showed an average value of $\$ 11=0.59$, with a lowest value of 5.29 in November 2009 and a highest value of 7.3 in Fetruary 2010, with a coefficient of variation of $8.13 \%$. St. 4 showed an average value of 6.02 $=0.38$ with highest value of 6.9 in February 2010 and an acidic value of 5.51 in March 2010 ( $\mathrm{CV}-8.84 \%$ ).

Seasonally, wide variation in pH was observed in the four stations. An average value of $5.91=0.51$ was observed in monsoon 2009, $6.44 \pm 0.51$ in pre monsoon, $6.036 \pm 0.49$ derez post monsoon 2009 and $6.12 \pm 0.54$ in monsoon 2010 respectively (Fig.4). The ANOVA of soil pH showed an overall significance at $1 \%$ level ( $\mathrm{F}=9.873$ ) (Table 2). Demcan post hoc test also revealed that the variations were significant, where three seasons $=$ prouped into 2 subsets, having stations 1 and 3 in subset1 and 2 in subset 2 . The Frapines were significant at $1 \%$ in subset 2 (Table 3 ). The nature of soil was mostly acidic elag the monsoon in the years 2009 and 2010. pH values were almost neutral in post
of dendrogram depicted that the pH was grouped in to 3 clusters with the highest similarity in organic St. 3 and fertilizer St. 4 ( $99.75 \%$ ) whereas a least similarity was shown in organic station 1 ( $98.8 \%$ ) (Fig.5). Station wise non-metric multidimensional scaling (MDS) ordination of pH concentration showed a clear distinction in the distribution of pH between organic and chemical fertilizer stations (Fig.6). All the four stations showed a similarity of $80 \%$ whereas highest similarity in pH variation was found between St .3 and St.4. Season wise, Bray-Curtis similarity profile indicated that, pH gave three clusters (Fig.7). The similarity in pH was highest in second cluster represented by St. 3 -monsoon 2009, St. 4 monsoon 2010, St. 2 post monsoon 2009 and St. 4 monsoon 2009 ( $99.8 \%$ ), followed by cluster 1 represented by St. 2 pre monsoon 2009, St. 1 Monsoon 2009, St. 3 Pre monsoon 2009, and St. 4 monsoon 2009 $(99.5 \%)$ and least in cluster 3 represented by St. 1 monsoon 2009, St. 1 monsoon 2010, St. 4 Post Monsoon 2009, St. 1 post monsoon 2009, St. 2 Monsoon 2010, St. 3 Monsoon 2009 and Post Monsoon 2009 (99.3\%). Seasonally non-metric multidimensional scaling (MDS) ondination of pH concentration showed a similar trend in all seasons except in monsoon 2009. An overall similarity of $20 \%$ was shown in all seasons with a stress factor of 0.01 which is an eceellent representation. (Fig.8). Pearson correlation analysis of pH showed a negative emrclation with Eh having a significance of $0.05 \%$.

In the present study, soil pH values were found marginally higher in the organic mended stations as compared to fertilizer zones. The pH values were mostly acidic in nature dering March. May, July and August 2010 in both organic as well as fertilizer farming stanoss. Studies conducted in California's Sacramento Valley reported that pH values in arganic farming systems experienced a rise in soil pH (Sean Clark et al., 1998). This agrees widh the present study where a marginal increase in values was observed in organic zones ( 6091 ) as compared to the fertilizer zone ( 6.028 ). The rise in pH could be attributed to longterne changes in soil pH that occur as a result of displacing cations or adding sources of mezity such as $\mathrm{H}^{+}$and $\mathrm{Al}^{2+}$ on the cation exchange complex of soils as reported by Tisdale et al. (1993)


Fig. 2 Monthly variation of temperature ( ${ }^{\circ} \mathrm{c}$ ) in selected stations of Padayatti wetland, Palakkad 2009-2010.


Fie 3 Moetly variation of pH in selected stations of Padayatti wetland, Palakkad


Fig. 4 Seasonal variation of pH in selected stations of Padayatti wetland, Palakkad during 2009-2010.

Complete inkiage


Fig 5 Station wise Bray-Curtis similarity plot of soil pH in selected wetlands of Patryathi Palakkad 2009-2010.


Fig.6 Station wise Multi dimensional plot (MDS) of soil pH in selected wetlands of Padayatti, Palakkad 2009-2010.

Complete linkage

Transtom: Square Foct Resemkimet $\$ 17$ Bray Curtis simiarty


Fig. 7 Scason wise Bray-Curtis similarity plot of soil ph in selected wetlands of Pabyami. Palakkad 2009-2010.


Fig. 8 Season wise Multi dimensional plot (MDS) of soil pH in selected wetlands of Padayatti, Palakkad 2009-2010.

Table 2 ANOVA table of pH in Padayetti wetland, Palakkad during 2009-2010

| Source | df | Mean Square | F |
| :---: | :---: | :---: | :---: |
| Comected Model | 11 | . 614 | 2.387 |
| hernuept | 1 | 4059.133 | 15779.233 |
| Sensen | 2 | 2.540 | $9.873^{* *}$ |
| Scution | 3 | . 229 | . 890 |
| Seasoe * station | 6 | . 149 | . 580 |
| Enar | 100 | . 257 |  |
| Timal | 112 |  |  |
| Crnected Total | 111 |  |  |
| R Spared = 208 | **- significant at $1 \%$ level. <br> * - significant at $5 \%$ level. |  |  |

Table 3 Post Hoc table of pH in Padayetti wetland, Palakkad during 2009-2010

| pH |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Season | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan | 1 | 32 | 5.9112 |  |
|  | 3 | 48 | 6.0369 |  |
|  | 2 | 32 |  | 6.4438 |
|  | Sig. |  | . 296 | 1.000 |
| Means for groups in homogeneous subsets are displayed. |  |  |  |  |
| Based on observed means. |  |  |  |  |
| The error term is Mean Square (Error) -.257 . |  |  |  |  |
| 2. Uses Harmonic Mean Sample Size $=36.000$. |  |  |  |  |

## 62 Oxidation Reduction Potential (Eh)

Oxidation-reduction potential is the measure of electron activity of the soil and is one : most important electrochemical properties of the soil affected by the dynamic changes, wetlands are subjected to hydrological fluctuations. Station wise analysis of Eh showed rtrend in all stations depending on the hydrological pattern. During the study a ng trend was observed during the water logged months in July, August, September, and $\approx 2010$ whereas an oxidative nature was observed during the dry months of November, Dember, January, and February 2010 (Fig.9).

The oxidation reduction potential showed a negative trend in stationl having an mef of $-92.46 \pm 129 \mathrm{mv}$ with a lowest value of -336 mv in September 2010 and -102 mv in April 2010. Station 2 also showed an average value of $-92.62 \pm 148 \mathrm{mv}$ with the lowest atre of -339 in the month of September 2010 and a highest value of 105 in May 2010. Areye Ele value of $-59.9 \pm 123.9 \mathrm{mv}$ was observed in st .3 with a minimum value of -298 mv = Angest 2010 and maximum value of 126 in May 2010. Station 4 also showed a negative min in with anerage value of $-85 \pm 101.3 \mathrm{mv}$, having a lowest value of -227 mv and a lifles valoe of 64 mv in April 2010.


Fig. 9 Monthly distribution of Eh (MV) in selected stations of Padayatti wetland, Palakkad, during 2009-2010

Seasonally the Eh values showed a similar trend in all stations. During the study phad (2009-2010) a reducing trend in Eh was observed in all seasons except pre monsoon $F \operatorname{Fin}$. Dynamic changes in hydrological pattern greatly influenced the oxidation reduction emations of the system. The average values of Eh in different seasons were given in Table 3. The carrelation analysis of Eh showed a positive correlation coefficient of $1 \%$ significance henceen Sodium, potassium and calcium concentrations. The ANOVA of pH was significant IE F - level ( $\mathrm{F}=66.855$ ) scasonally (Table 5 ). The Duncan post hoc test revealed that the ther seavos were grouped into 3 subsets with a significance of $1 \%$ (Table 6).

Table 4 Average seasonal variation in Eh (mv) in different stations of Padayati wetland. Palakkad during 2009-2010

| Scasie Eb(mv) | StI | St2 | St3 | St4 |
| :---: | :---: | :---: | :---: | :---: |
| 14mene | -5.575 | -5.575 | -28.125 | -60 |
| Patmenoce | -189.25 | -189.25 | -184.5 | -174.25 |
| 7enmes | 41.25 | 41.25 | 31.50625 | 2.00 |
| $\square$ | 21675 | 21 | -58 5177 | 10776 |



Fiz. 10 Seasonal distribution of Eh in selected stations of Padayatti wetland, Palakkad
Table 5 ANOVA table of Eh in Padayetti wetland, Palakkad

| Source | df | Mean Square | F |
| :---: | :---: | :---: | :---: |
| Crreected Model | 11 | 91964.049 | 12.723 |
| Seasce | 2 | 483225.224 | 66.855 |
| strion | 3 | 3245.851 | . 449 |
| Senser * station | 6 | 6257.799 | . 866 |
| Entr | 100 | 7227.919 |  |
| Total | 112 |  |  |
| Cerrected Total | 111 |  |  |
| $\begin{aligned} & \text { R Squared }=583^{* *} \text { - significant at } 1 \% \text { level. } \\ & *-\text { ngificant at } 55^{\circ} \text { level. } \end{aligned}$ |  |  |  |

Table 6 Post Hoc table of pH in Padayetti wetland, Palakkad during 2009-2010

| Eh |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Season | N | Subset |  |  |
|  |  |  | 1 | 2 | 3 |
| Duncan | 2 | 32 | -191.1875 |  |  |
|  | 1 | 32 |  | -84.9997 |  |
|  | 3 | 48 |  |  | 31.1919 |
|  | Sig. |  | 1.000 | 1.000 | 1.000 |
| Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) $=7227.919$. |  |  |  |  |  |
| 2. Uses Harmonic Mean Sample Size $=36.000$. |  |  |  |  |  |

### 6.3 Soil Total Nitrogen (STN)

In an agricultural ecosystems soil total nitrogen (STN) is a major determinant and indicators of soil fertility (Reeves, 1997). Thus a reduction in total nitrogen levels will result in decrease in soil fertility, soil nutrient supply, and thus soil productivity (Gray and Morant, 2031 The station wise analysis of total nitrogen in the paddy wetlands of Padayatti depicted $=$ asenge value of $0.739 \%$ in st. $1,0.768 \%$ in st. $2,0.85 \%$ in st. 3 and $0.769 \%$ in st. 4 mpectively (Fig. 11).

In St. 1 an average value of $0.739 \pm 0.508 \%$ was observed. Total Nitrogen showed a leaer value of $0.265 \%$ in the month of January 2010 and a highest value of $1.825 \%$ in Dewer 2009, with a coefficient of variation (CV \%) of $68.3 \%$. In station 2 variations in mail hatal nitrogen showed an average value of $0.768 \pm 0.779 \%$, with a lowest value of ansem in the month September 2010 and a highest value of $2.934 \%$ in November 2009, Laing a cocfficient of variation of $101.41 \%$. An average percentage value of $0.849 \pm 0.779$ in meil nimogen wete observed in St. 3, with a lowest reported value of $0.222 \%$ in January 2010 and a heghest observed value of $2.78 \%$ in November 2009 (CV=91.38). St. 4 the chemical I- aone, showed an average value of $0.77 \pm 0.556 \%$ in STN, with a lowest observed zaf of $0.236 \%$ in the month May 2010 and a highest value of $2.01 \%$ in November 2009 , whe a enefficmt of variation of $72.24 \%$.

Seasanaly wide vartation in total nitrogen was observed in the four stations (Fig. 12). A men anal nemogen value of $1.02 \%$ was observed in monsoon $2009.1 .2 \%$ in pre monsoon

SC. 150.3 . Whereas an average value of $0.895 \%$ in monsoon $2009,1.15$ in post monsoon 2009, 2.44 during post monsoon 2009 and 0.59 in monsoon 2010 was observed in chemical fertilizer applied St.4. During the monsoon, St. 1 showed a highest average value of $1.0569 \%$ $=2009$, whereas highest value of $1.4 \%$ was observed in St. 2 during post monsoon. In the pre highest mean value of $0.503 \%$ was reported in St. 3 and $0.59 \%$ in St. 4 during monsoon. In all the stations the percentage variation of STN was low in both pre monsoon mal monsoon whereas elevated concentrations were observed during post monsoon period. The ANOVA of soil total nitrogen showed an overall significance at $1 \%$ level $(\mathrm{F}=14.182)$ (Thate 7). In Duncan post hoc analysis, the 3 seasons were grouped into 3 subsets and were myafonce at $1 \%$ level. The correlation coefficient analysis of soil total nitrogen showed a Preise correlation between organic carbon, organic matter significant at $1 \%$ level (Table 8 ).

Mean station wise analysis of dendrogram depicted highest similarity in organic (St.2) and Hellar St. $4(99 \%)$, whereas a least similarity was shown in organic st. 3 ( $97.5 \%$ ) (Fig.13). Sunce wise non-metric multidimensional scaling (MDS) ordination of total nitrogen ememtration showed a clear distinction in variation of total nitrogen between organic and fertilizer stations (Fig,14). All the four stations showed a similarity of $80 \%$ whereas similarity in total nitrogen variation was found between St. 2 and St.4. Season wise BrayCantis similarity profile for total nitrogen showed four clusters (Fig.15). The similarity in total men was highest in third cluster ( $98 \%$ ) represented by St. 1 post monsoon 2009, St. 2 monsoon $2 \rightarrow$ and St-4 monsoon 2009. Cluster I showed $96 \%$ similarity in seasonal distribution of total represented by St. 4 monsoon 2010, St. 1 post monsoon 2009 and monsoon 2010. by cluster 2 with a similarity of $96 \%$ represented by St 2 post monsoon 2009 , St 2 2010, and St. 4 post monsoon 2009, St. 3 post monsoon 2009 and St. 3 monsoon 2010. Lestarity was found in cluster 4 having a similarity of $91 \%$ represented by St. 2 monsoon Z209, Se. 3 monsoon 2009, st. 4 monsoon 2009, St. 1 monsoon 2009 and St. 3 monsoon 2009. Senmally non-metric multidimensional scaling (MDS) ordination showed that of total nitrogen Panon were similar in all seasons with an overall similarity of $20 \%$ ( Fig .16 ) whereas it was Ir at about $80 \%$ between St. 1, St.2, St.3, and St. 4 during post monsoon 2009 and St.I mase 2 in Mensoon 2009. Seasonally, in all the four stations monsoon and pre monsoon, periods zand hetet concentrations of total nitrogen. The organic farming zones represented by St. 1 to 2 B shaed compuratively higher total nitrogen values as compared to the fertilizer amended $=5 \mathrm{St} 4$. However the overall examination of the data could not evolve any remarkable zability among the fernilizer or organic amended zones. Studies conducted by Gosling and

Shepherd (2004) observed that the higher nitrogen content was related to organic fertilizer application. Total nitrogen has a significant correlation with soil organic matter and an ehancement in the total nitrogen content under organic fertilizer application were reported by Sacid Hojati and farshid Nourbakhsh (2006) due to high loading of organic C and N in the arganic materials.


Fig. 11 Monthly variation of soil total nitrogen(\%) in selected stations of Padayatti wetland, Palakkad during 2009-2010.


Fiz 12 Seasonal variation of Total Nitrogen (\%) in selected stations of Padayetti wetland. Palakkad during 2009-2010.


Fig. 13 Station wise Bray-Curtis similarity plot of soil Total Nitrogen (\%) in selected wetlands of Padatati, Palakkad during 2009-20I0.


Fif 14 Scation wise Multi dimensional plot (MDS) of Total Nitrogen (\%) in sclected wetlands of Padayatti, Palakkad during 2009-2010.

- Complete linkage


Fig. 15 Season wise Bray-Curtis similarity index of Soil Total Nitrogen (\%) in selected wetlands of padayati, Palakkad during 2009-2010.


7 ANOVA table of Total Nitrogen (\%) in Padayati wetland, Palakkad


Table 8 Post Hoc table of pH in Padayetti wetland, Palakkad during 2009-2010

| TN |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Season | N | Subset |  |  |
|  |  |  | 1 | 2 | 3 |
| Dancaa | 3 | 48 | . 4542 |  |  |
|  | 1 | 32 |  | . 7415 |  |
|  | 2 | 32 |  |  | 1.1882 |
|  | Sig. |  | 1.000 | 1.000 | 1.000 |
| 3 nes froups in homogeneous subsets are displayed. luel on observed means. <br> Tirenor term is Mean Square $($ Error $)=, 365$, |  |  |  |  |  |
| $\square$ Prenonic Mean Sample Size $=36.000$. |  |  |  |  |  |

## able Nitrogen

present study station wise analysis of the soil available nitrogen depicted no at variations between the organic amended and chemical fertilizer stations. A mean was observed in the four stations. Station wise analysis showed an average - ar $0.0592=0.079 \%$ in $5 t .1$ with a lowest reported value of $0.0064 \%$ in the month of and a highest value of $0.355 \%$ in October 2010. St. 2 showed an average value of $Z=0.0095 \%$ with a lowest value of $0.0131 \%$ in April 2010 and a highest value of September 2010. An average value of $0.0448 \pm 0.0096 \%$ was observed in st. 3 with - value of $0.071 \%$ in September 2009 and lowest value of $0.0321 \%$ in September SC. 4 showed an average value of $0.0449 \pm 0.0060 \%$ with lowest reported value of September 2010 and highest value of $0.0556 \%$ in June 2010 (Fig. 17 ).

Seasonally wide variation in available nitrogen was observed in the four stations (Fiz 18). An average value of $0.522 \pm 0.056 \%$ was observed in monsoon 2009, $0.438 \pm$ $0.355 \pm$ in post monsoon, $0.405 \pm 0.013 \%$ in pre monsoon 2009 and $0.448 \pm 0.032 \%$ monsoon respectively. The average percentage composition of available nitrogen in St. 1 in 2009, Post monsoon 2009, pre monsoon 2010 and monsoon 2010 was 0.115 , . 0.036 and 0.431 respectively. In St. 2 it was $0.037 \%$ in monsoon $2009,0.043 \%$ in
monsoon, 0.036 in pre monsoon and $0.042 \%$ in monsoon 2010. In St. 3 the average age composition of available nitrogen varied from 0.0386 in monsoon $2009,0.044 \%$ in pes monsoon 2009, $0.043 \%$ in pre monsoon 2010 and $0.053 \%$ in monsoon 2010. In St. 4 excertrations varied from $0.046 \%$ in monsoon 2009, $0.045 \%$ in post monsoon 2009, ALES5\% in pre monsoon 2010 and $0.0414 \%$ in monsoon 2010.

Mean station wise analysis of dendrogram depicted highest similarity in organic St. 3 mel ferilizer Zone St. 4 ( $100 \%$ ) whereas a least similarity was in organic zone st. 2 ( $95 \%$ ) (Fig. 15). Sation seen wise non-metric multidimensional scaling (MDS) ordination of total amen concentration showed a clear distinction in variation of available nitrogen between and chemical fertilizer stations (Fig.20). All the four stations showed a similarity of ETS. whereas highest similarity in total nitrogen variation was found between St. 3 and St. 4 . wise Bray-Curtis similarity profile for total nitrogen showed four clusters (Fig.21). larity in total nitrogen was highest in third cluster ( $98 \%$ ) represented by St. 1 post 2009. St. 2 monsoon 2009 and St. 4 monsoon 2009. Cluster I showed $96 \%$ similarity an mesonal distribution of total nitrogen represented by St.4, monsoon 2010, St. 1 post 2009 and monsoon 2010. In cluster 2 a similarity profile of $96 \%$, were represented EY Si 2 post monsoon 2009, St 2 monsoon 2010, and St. 4 post monsoon 2009, St. 3 post 2009 and St. 3 monsoon 2010. Least similarity was found in cluster 4 having a E-Trity of $91 \%$ represented by St. 2 monsoon 2009, St. 3 monsoon 2009, st. 4 monsoon 2009, SEl mosoon 2009 and St. 3 monsoon 2009. Seasonally non-metric multidimensional scaling NDSS) ordinution showed that of total nitrogen concentration were similar in all seasons with similarity of $20 \%$ whereas it was highly similar at $80 \%$ between St.I, St. 2, St. 3, and Scidurng post monsoon 2009 and St. 1 and St. 2 in monsoon 2009 (Fig.22).


Fig. 17 Variation of available nitrogen (\%) in selected stations of Padayati wetland, Palakkad during 2009-2010


Fie. 18 Scasonal variation of available nitrogen $\%$ in selected stations of Padayati

- Group average


Fig. 19 Station wise Bray-Curtis similarity plot of Available Nitrogen (\%) in selected wetlands of Padatati, Palakkad during 2009-2010.

## St. 4

SI 1

## St. 3

Fige 30 Station wise Multi dimensional plot (MDS) of Available Nitrogen (\%) in sclected wetlands of Padayatti, Palakkad during 2009-2010.

- Complete linkage


Fig. 21 Season wise Bray-Curtis similarity of soil available nitrogen (\%) in selected wetlands of Padayatti, Palakkad during 2009-2010.


Fie 32 Season wise multi dimensional plot (MDS) of soil available nitrogen (\%) in selected wetlands of Padayatti, Palakkad during 2009-2010.

Table 9 ANOVA table of Available Nitrogen in Padayati wetland, Palakkad during 2009-2010

| Source | df | Mean Square | F |
| :---: | :---: | :---: | :---: |
| Camected Model | 11 | . 001 | 1.074 |
| herercept | 1 | . 224 | 230.113** |
| Season | 2 | . 001 | 1.378 |
| station | 3 | . 001 | . 755 |
| Season * station | 6 | . 001 | 1.231 |
| Enor | 100 | . 001 |  |
| Tixal | 112 |  |  |
| Carrected Total | 111 |  |  |
| 2. Squared $=.106$ | * $5 \%$ level of significance <br> ** $1 \%$ level of significance |  |  |

Table 10 Post Hoc table of pH in Padayetti wetland, Palakkad during 2009-2010 An

| Season | $\mathbf{N}$ | Subset |  |
| :---: | :---: | :---: | :---: |
|  |  |  | 1 |
|  | 3 | 48 | .0405 |
|  | 2 | 32 | .0438 |
|  | 1 | 32 | .0522 |
|  | Sig. |  | .136 |

zroups in homogeneous subsets are displayed.
Beset en observed means.
The enor lerm is Mean Square(Error) $=.001$.
z Leses Hammonic Mean Sample Size $=36.000$.

## 15 Avallable Phosphorus

Rusphorus is one of the limiting essential element classified as a macronutrient the relatively large requirement by plants. Station wise analysis of available thowed an average value of $76.89 \pm 67.14 \mathrm{mg} / \mathrm{g}$ in St.1, with a lowest value of 4 Ct m g in Angust 2009 and a highest value of $209.62 \mathrm{mg} / \mathrm{g}$ in June 2010. In St. 2 the
$12.74 \mathrm{mg} / \mathrm{g}$ in July 2010 and minimum value of $1.05 \mathrm{mg} / \mathrm{g}$ in July 2009. In St. 3 the average whe of phosphorus was $61.76 \pm 49.13 \mathrm{mg} / \mathrm{g}$ with the value of $0.129 \mathrm{mg} / \mathrm{g}$ in the month Sptember 2009 and a highest value of $129.09 \mathrm{mg} / \mathrm{g}$ in September 2010. In St. 4 Phosphorus thered a mean value of $67.44 \pm 58.12 \mathrm{mg} / \mathrm{g}$ with a lowest value of $0.034 \mathrm{mg} / \mathrm{g}$ in September $3 n 0$ and a highest value of $67.436 \mathrm{mg} / \mathrm{g}$ August 2010 (Fig.23).

Seasonally wide variation in phosphorus concentrations was observed in the four Deiiss (Fig 24). ANOVA of soil phosphorus showed an overall significance at $1 \%$ level ( F $=21263$ ) (Table 11). Duncan Post hoc analysis showed that seasons were grouped in to 3 where stations 1,2 and 3 are in subsets 1,2 and 3 respectively and the groupings are cant at $1 \%$ level (Table 12). An increasing trend in phosphorous concentration was therved in all stations during the study period 2009 - 2010. Seasonally, in St. 1 phosphorus Ehaed the highest average value of $130.82 \mathrm{mg} / \mathrm{g}$ during monsoon 2010. In St. 2 highest value $=1005 \mathrm{mg} \mathrm{g}$ was observed during pre monsoon 2009. An average highest value of 113.94 Pas was observed in monsoon 2010 in St. 3 and in St. 4 the highest concentration of 41 phosphorus was observed during monsoon 2010.

Mean station wise analysis of dendrogram depicted that the phosphorus was grouped 2 am 2 clusters with the highest similarity in organic zone St. 1 and St. $3(98 \%)$ whereas a least was shown in st. 2 and St. 4 (96\%) (Fig.25). Station wise non-metric -aternsional scaling (MDS) ordination of phosphorus showed a clear distinction in the a between organic and chemical fertilizer stations. All the four stations showed a of $80 \%$ whereas highest similarity in pH variation was found between St. 1 and St. 2 Season wise, Bray-Curtis similarity profile indicated that, pH gave three clusters The similarity in pH was highest in second cluster represented by St. 1- pre monsoon S. 5 monsoon 2009, St. 3 post monsoon 2009 and St. 2 pre monsoon 2009 ( $95 \%$ ), by cluster 1 represented by St. 2 pre monsoon 2009, St. 1 Monsoon 2009, St. 3 Pre 2009 , and St. 4 monsoon $2009(99.5 \%)$ and least in cluster 3 represented by St. 1 2009. St. 1 monsoon 2010, St. 4 Post monsoon 2009, St. 1 post monsoon 2009, St. 2 2010. St. 3 monsoon 2009 and Post monsoon 2009 ( $99.3 \%$ ). Seasonally non-metric -atinemsonal scaling (MDS) ordination of pH concentration showed a similar trend in all - encept in monsoon 2009. An overall similarity of $20 \%$ was shown in all seasons with - $2=$ fictor of 0.01 which is an excellent representation with no prospect of (Fig.28).

The correlation coefficient analysis of phosphorous showed a positive correlation teween Eh, energy content, sodium, potassium and calcium significant at $1 \%$ level. The areage available phosphorous concentration showed only marginal variation among the mpic and fertilizer amended zones. During the study period available phosphorous were berved with its highest concentration in organic zone, St. 1 and St .2 , whereas the areations were lowest in station St.3. Studies show that concentrations of extractable P E- conversion to organic management were considerably low in organic managed areas Le conventionally managed fields. However, the results do offer support to the argument Zer arganic farming is mining reserves of phosphorus built up by conventional management Thing and Shepherd 2005). However studies conducted in more than 30 farms in England zeler conventional and organic management zones reported that no significant difference in maible P concentrations were found between organic and fertilizer amended zones (Sean That ef al 1998).


Fig. 23 Variation of available phosphorus ( $\mathrm{mg} / \mathrm{g}$ ) in selected stations of Padayati wetland, Palakkad.


24 Seasonal variation of Phosphorus ( $\mathrm{mg} / \mathrm{g}$ ) in selected stations of Padayati wetland, Palakkad during 2009-2010

Complete linkage
Thanhorm Squaterock
Deswntioniel 817 Eray Cians sum irvity
$\square$
E
0
0
Samples

Fig. 26 Station wise Multi dimensional plot (MDS) of soil Available Nitrogen in selected wetlands of Padayatti, Palakkad during 2009-2010.

Complete linkage

Transform: Square root
Possembimce 8.17 Graty Curts smmerty


Fie 77 Season wise Bray- Curtis similarity of soil phosphorous in selected =etlands of Padayatti. Palakkad during 2009-2010.


Scasonal Multi dimensional plot (MDS) of soil phosphorus in selected wetlands of Padayatti, Palakkad during 2009-2010
11 ANOVA table of phosphorous in Padayati wetland, Palakkad during 2009-2010,

| - ustures |  |  |  |
| :---: | :---: | :---: | :---: |
| Source | df | Mean Square | F |
| [tad Model | 11 | 9683.236 | 4.573 |
| - | 1 | 550637.837 | 260.053 |
| $\square=$ | 2 | 45022.375 | 21.263** |
| $\square$ | 3 | 1536.185 | . 726 |
| 7enare sturion | 6 | 1505.793 | . 711 |
| $\because$ | 100 | 2117.410 |  |
| $\square$ | 112 |  |  |
| Hremel Tatal | 111 |  |  |
| $7 \mathrm{ment}=335$ - significant at $1 \%$ level. |  |  |  |

Table 12 Post Hoc table of phosphorus in Padayetti wetland, Palakkad during 2009-2010

| P |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Season | N | Subset |  |  |
|  |  |  | 1 | 2 | 3 |
| Duncan ${ }^{2}$ | 2 | 32 | 41.5938 |  |  |
|  | 1 | 32 |  | 64.9076 |  |
|  | 3 | 48 |  |  | 107.7100 |
|  | Sig. |  | 1.000 | 1.000 | 1.000 |
| for groups in homogeneous subsets are displayed. ton observed means. arror term is Mean Square (Error) $=2117.410$. |  |  |  |  |  |
| Harmonic Mean Sample Size $=36.000$. |  |  |  |  |  |

The mean sodium concentration in the soils of Padayatti wetland during the present $5.442 \mathrm{mg} / \mathrm{g}$. The station wise analysis of the data showed an average of $0.484 \pm$ meg in St. 1 with a highest value of $0.735 \mathrm{mg} / \mathrm{g}$ in the month of July 2009 and a lowest $0.331 \mathrm{mg} / \mathrm{g}$ in November 2009. In St.2, sodium showed an average value of $0.438 \pm$ Is. with a highest value of $0.767 \mathrm{mg} / \mathrm{g}$ in July 2009 and a minimum reported value of Z in September 2010. An average value of $0.447 \pm 0.115 \mathrm{mg} / \mathrm{g}$ was observed in St. 3 with -and value of 0.706 in July 2010 and a minimum value of $0.221 \mathrm{mg} / \mathrm{g}$ in October 2010 In St. 4 an average value of $0.45 \pm 0.136 \mathrm{mg} / \mathrm{gwas}$ observed with a highest value of - meg in July 2009 and 0.038 in March 2009 (Fig.29).

Seasonally wide variations in concentrations were observed in the three seasons. All Eniass showed lowest concentration of sodium during post monsoon. Highest neations were observed in pre monsoon and moderate valued were shown in 2009 and moon season (Fig. 30). The ANOVA of soil sodium showed an overall significance - Sinel ( $\mathrm{F}=9.910$ ) (Table 13). Duncan post hoc test showed that sodium was grouped 2 elsess, where station 2 and 1 were in subset1 and 2 in subset 2 . The grouping was - $\quad=$ an $1^{5}$ in subset 2 (Table 14). Elevated concentrations of sodium were observed in manen in all stations.

Mene station wise analysis of Bray- Curtis similarity showed, that sodium was $\bar{T}=1 \mathrm{~m}=$ clusters with highest similarity in organic St. 2 and St. $3(99.5 \%)$ whereas a
meltidimensional scaling (MDS) ördination of total nitrogen concentration showed a clear Estinction in variation in sodium between organic and chemical fertilizer stations (Fig.32).
the four stations showed a similarity of $80 \%$ whereas highest similarity in total nitrogen teration was found between St.1, 2 and 3. Season wise Bray-Curtis similarity profile for whum showed three clusters (Fig.33.). The similarity in sodium concentration was highest in cluster ( $98 \%$ ) represented by St. 1 post monsoon 2009, St. 2 monsoon 2009 and St. 4 =soon 2009. Cluster 1 showed $96 \%$ similarity in seasonal distribution of total nitrogen \#esented by St. 4 monsoon 2010, St. 1 post monsoon 2009 and monsoon 2010. Followed by Uer 2 with a similarity of $96 \%$ represented by St 2 post monsoon 2009, St 2 monsoon and St. 4 post monsoon 2009, St. 3 post monsoon 2009 and St. 3 monsoon 2010. Least -ilurity was fond in cluster 4 having a similarity of $91 \%$ represented by St. 2 monsoon 2009, Exs monsoon 2009, st. 4 monsoon 2009, St. 1 monsoon 2009 and St. 3 monsoon 2009. -nally non-metric multidimensional scaling (MDS) ordination showed that of sodium -atration were similar in all seasons with an overall similarity of $20 \%$ (Fig.34) whereas it 2athely similar at about $80 \%$ between St.1, St.2, St.3, and St. 4 during post monsoon 2009 Eas.l and St. 2 in Monsoon 2009.


Fe29 Vanation of sodium ( $\mathrm{mg} / \mathrm{g}$ ) in selected stations of Padayatti wetland,


Fe. 30 Scasonal variation of Sodium ( $\mathrm{mg} / \mathrm{g}$ ) in selected stations of Padayatti wetland, Palakkad during 2009-2010.

Complete linkage
franufurn thquaw rext
Resembianioe: 817 Bray Curts 2 mian ty


Funissonse Bray-Curtis similarity of sodium ( $\mathrm{mg} / \mathrm{g}$ ) in selected wetlands

## St. 3

32 Station wise multi dimensional plot (MDS) sodium ( $\mathrm{mg} / \mathrm{g}$ ) in selected wetlands of Padayatti, Palakkad during 2009-2010.

Complete linkage

Trasstorm Square root
Fesembiance. $\$ 17$ bray Curts similanty


Scason wise Bray- Curtis similarity of soil sodium in selected wetlands of


Fig_34. Seasonal multi dimensional plot (MDS) of soil Sodium ( $\mathrm{mg} / \mathrm{g}$ ) in selected wetlands of Padayatti, Palakkad during 2009-2010.

Table: 13 ANOVA table of Sodium in Padayetti wetland, Palakkad

| Source | df | Mean Square | F |
| :---: | :---: | :---: | :---: |
| 20 Model $^{2}$ | 11 | .036 | 3.480 |
| $*$ station | 2 | .103 | $9.910^{* *}$ |

Table 14 Post Hoc table of-sodium in Padayetti wetland, Palakkad during 20092010

Duncan

| Na |  |  |  |
| :---: | :---: | :---: | :---: |
| Season | $\mathbf{N}$ | Subset |  |
|  | 3 | $\mathbf{1}$ | $\mathbf{2}$ |
| 1 | 32 | .4173 |  |
| 3 | 48 | .4215 |  |
| Sig. |  |  | 5062 |

for groups in homogeneous subsets are displayed.
d on observed means.
The error term is Mean Square(Error) $=.010$.
Les Harmonic Mean Sample Size $=36,000$.

## 1 Potassium

The average concentration of available potassium in the soil of Padayatti wetland was
$\mathrm{mg} / \mathrm{g}$ during the study period. In St. 1 the average potassium concentration was 0.843 $\mathrm{mg} / \mathrm{g}$ with highest value of $2.17 \mathrm{mg} / \mathrm{g}$ in July 2009 and lowest of $0.106 \mathrm{mg} / \mathrm{g}$ in 2010. St. 2 showed a mean value of $0.747 \pm 0.489 \mathrm{mg} / \mathrm{g}$ during the entire study with a value of $1.89 \mathrm{mg} / \mathrm{g}$ in the July 2010 and lowest value of $0.206 \mathrm{mg} / \mathrm{g}$ in August 2010 . 3 alo showed an average value of $0.599 \pm 0.35 \mathrm{mg} / \mathrm{g}$ during the entire study, with a m value of $1.214 \mathrm{mg} / \mathrm{g}$ in July 2009 and a lowest value of 0.235 in August 2009. The $\pm$ also reported an average value of $0.503 \pm 0.42 \mathrm{mg} / \mathrm{g}$ potassium with highest value of 1.45 $=\mathrm{g}$ in July 2010 and $0.061 \mathrm{mg} / \mathrm{g}$ in February 2010 (Fig.24). The monthly station wise _ysis showed that potassium concentration ranged from $0.258 \mathrm{mg} / \mathrm{g}$ in September 2010 to $\rightarrow$ in June 2010 in St. 1; that from 0.206 in September 2010 and 1.676 in June 2010 in St.2; In Hom 0.267 in September 2010 to 1.169 in June 2010 in St. 3 and 0.061 in February 2010 al. 445 in July 2010 in St.4. Organic farming practices in California sacramento valley over 5 year have found higher K levels especially the plant available potassium in organic neas as compared to conventional management (Sean Clark et al 1998, Reganold, 1988; - et al., 1989: Drinkwater et al., 1995) (Fig.35).

Senscal analysis of potassium during the study period showed highest concentration monsoon in all station except in St.4. In St.4, practiced by chemical fertilizers all potassium concentration was observed except in post monsoon season (Fig.36). ANOVA of soil potassium showed an overall significant at $1 \%$ level $(\mathrm{F}=5.762)$ =ISA. A Duncan post hoc test revealed that potassium is grouped in to 3 subsets (Table ANOVA of scasons showed a statistical difference of $1 \%$. Seasonally post hoc grouped in to 2 subsets, where stations 2 and 1 was in subset 1 and 3 in subset 2 . are significant at $1 \%$ level in subset 2 .

$=\geq$. Manaly variation potassium ( $\mathrm{mg} / \mathrm{g}$ ) in selected stations of Padayatti welat Palakad during 2009-2010


Fig 36 Seasonal variation of Potassium ( $\mathrm{mg} / \mathrm{g}$ ) in selected stations of Padayetti wetland, Palakkad during 2009-2010.

Complete linkage
[Tieraform. squate ram
Pesembireve 517 firary Curtis simnaily


Fig 37 Station wise Bray-Curtis similarity of soil Sodium ( $\mathrm{mg} / \mathrm{g}$ ) in selected wetlands of Padayatti, Palakkad during 2009-2010.

Fig 38 Station wiseMulti dimensional plot (MDS) of soil Sodium ( $\mathrm{mg} / \mathrm{g}$ ) in selected wetlands of Padayatti, Palakkad during 2009-2010

Complete linkage


Tey Scason wise Bray- Curtis similarity of soil Sodium ( $\mathrm{mg} / \mathrm{g}$ ) in selected


Multi dimensional plot (MDS) of soil Sodium in selected wetlands of Padayatti, Palakkad during 2009-2010

15 ANOVA table of potassium in Padayati wetland, Palakkad during 2009-2010

|  | df | Mean Square | F |
| :---: | :---: | :---: | :---: |
|  | 11 | 990 | 6.510 |
|  | 2 | 2.635 | 17.332 |
|  | 3 | .876 | 5.762 |

Table 16 Post Hoc table of sodium in Padayetti wetland, Palakkad during 2009. 2010

| K |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Season | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan ${ }^{2}$ | 2 | 32 | . 4697 |  |
|  | 1 | 32 | . 6260 |  |
|  | 3 | 48 |  | . 9696 |
|  | Sig. |  | . 092 | 1.000 |
|  | homogen <br> means. <br> ean Square | $=.152$ |  |  |

## 3 Calcium

The average concentration of calcium during the study period in Padayatti wetland was
$\Rightarrow g$. The station wise analysis of the data showed an average value of $3.114 \pm 1.08$ St. 1 with a highest value of $5.631 \mathrm{mg} / \mathrm{g}$ in July 2009 and a lowest value of $1.08 \mathrm{mg} / \mathrm{g}$ 2010. In station 2 calcium concentration showed an average value of $2.825 \pm 0.83$ a highest value of $4.417 \mathrm{mg} / \mathrm{g}$ in February 2010 and $1.483 \mathrm{mg} / \mathrm{g}$ in September 2009 atse lowest. An average value of $3.1 \pm 0.95$ was in St. 3 , with a highest concentration in the $\longrightarrow$ of March $2010(4.59 \mathrm{mg} / \mathrm{g})$ and lowest concentration of Ca in June $2009(1.024 \mathrm{mg} / \mathrm{g})$. Esc. calcium showed an average concentration of $2,513 \pm 0.84 \mathrm{mg} / \mathrm{g}$ with a highest reported -te of $3.57 \mathrm{mg} / \mathrm{g}$ in the month of October 2010 and lowest value of .148 in February 2010 [s412. The average concentrations of calcium during the study period ranged from 2.22 agin St. 4 to $3.015 \mathrm{mg} / \mathrm{g}$ in St. 3. The monthly station wise analysis of the data showed that concentration varied marginally among stations and it varied from $0.27 \mathrm{Img} / \mathrm{g}$ in 2010 to $5.009 \mathrm{mg} / \mathrm{g}$ in June 2010 in St.1; that from $0.305 \mathrm{mg} / \mathrm{g}$ in December 2010 wass mgg in July 2010 in St.2; that from $4.588 \mathrm{mg} / \mathrm{g}$ in March 2010 to $0.255 \mathrm{mg} / \mathrm{g}$ in 2011 in St. 3 and $0.148 \mathrm{mg} / \mathrm{g}$ in October 2010 to $3.568 \mathrm{mg} / \mathrm{g}$ in October 2010 in St. 4.

Seasonally calcium showed highest concentration during pre monsson in all the four Lowest concentrations were reported during monsoon (2009) in organic stations 2
[13 Fig 42) ANOVA of calcium showed an overall significance at $1 \%$ level ( $\mathrm{F}=12.187$ )
111. Duncan post hoc test revealed that the three stations were grouped into 3 subsets ficant at of $1 \%$ level.


Fig. 41 Variation of calcium ( $\mathrm{mg} / \mathrm{g}$ ) in selected stations of Padayatti wetland, Palakkad during 2009-2010


Fig. 42 Seasonal variation of calcium ( $\mathrm{mg} / \mathrm{g}$ ) in selected stations of Padayetti


Fig. 43 Station wise Bray-Curtis similarity of soil Calcium ( $\mathrm{mg} / \mathrm{g}$ ) in selected wetlands of Padayatti, Palakkad during 2009-2010,


Fig. 44 Station wise multi dimensional plot (MDS) of soil Calcium (mg/g) in selected wetlands of Padayatti, Palakkad during 2009-2010.


Fig. 45 Season wise Bray- Curtis similarity of soil Calcium ( $\mathrm{mg} / \mathrm{g}$ ) in selected wetlands of Padayatti, Palakkad during 2009-2010.


Fig. 46 Multi dimensional plot (MDS) of soil Calcium $9 \mathrm{mg} / \mathrm{g}$ ) in selected wetlands

Table 17 ANOVA table of Catcium in Padayati wetland, Palakkad during 2009-2010

| Source | df | Mean Square | F |
| :--- | :---: | :---: | :---: |
| Corrected Model | 11 | 2.528 | 3.683 |
| Season | 2 | 8.364 | $12.187^{* *}$ |
| Station | 3 | 2.531 | 3.688 |
| Season * station | 6 | .385 | .561 |
| Error | 112 | .686 |  |
| Total | 111 |  |  |
| Corrected Total | **- significant at I\% level. |  |  |
| R Squared = 288 | * significant at $5 \%$ level. |  |  |

### 6.9 Soil Organic Carbon, Organic Matter and Energy Content

Soil organic carbon (SOC) is one of the most important terrestrial pools for carbon storage. It is estimated that the paddy wetland ecosystems on the earth have a total carbon stock of about $20-25 \%$ of the total stock in terrestrial soils, and are considered to play an important role in global carbon cycling. During the present study organic carbon showed an average of $0.714 \%$ in the four stations. Station wise analysis showed an average value of $0.7196 \%$ in St. 1 having a CV value of $34.04 \%$, with a maximum value of $1.1 \%$ in June 2010 and a lowest value of $0.379 \%$ in February 2010. In St.2, organic carbon showed an average value of $0.786 \%$ with a maximum value of $1.26 \%$ in December 2010 and a lowest value of $0.408 \%$ in January 2010 having a CV value of $34.1 \%$. In St. 3 organic carbon depicted an average value of $0.69 \%(\mathrm{CV}=44.22 \%)$ with a peak value of $1.2 \%$ in November 2010 and a lowest of $0.83 \%$ in January 2010. St. 4 showed an average value of $0.663 \%$ with a maximum value of $1.29 \%$ in January 2009 and $0.419 \%$ in April 2010 (CV = 31.84\%) (Fig.47). Soil organic carbon showed an increased availability in soil during the months of April 2010 to August 2010. Mean results showed that St. 3 had the highest organic matter with $0.769 \%$. Studies comparing soils of organic and conventionally managed farming systems it was reported that, higher soil organic matter was reported in organic farming regions as compared to conventional methods (Lockeretz et al 1981; Alvarez et al., 1988; Reganold et al., 1993; Drinkwater et al 1995). This agreed with the present study.

Seasonally the ANOVA of-soil organic carbon showed that it was significant at $1 \%$ level ( $\mathrm{F}=12.187$ ) (Table 18). Season wise, Duncan test was grouped into 3 subsets with a significant level of $1 \%$. Seasonally wide variation in organic carbon was observed in the four stations. An annual increasing trend in organic carbon (\%) was observed in SL. 1 and 3 where as St. 2 and St. 4 showed a decline in its concentration. In St. 1 and station 3 maximum concentration of organic carbon were observed during the monsoon 2010, station 2 its highest concentration in pre monsoon whereas station 4 it was highest concentration in monsoon 2009. During the present study organic carbon showed significant positive correlation with total nitrogen, potassium and calcium. Pearson correlation coefficient results between organic carbon and total nitrogen showed a coefficient value of 0.350 , is significant at $1 \%$ level, whereas potassium and calcium showed significance at $5 \%$ level. Mean station wise analysis of Bray Curtis analysis showed highest similarity in organic zone St. 3 and fertilizer zone St. 4 $(99 \%)$ whereas a least similarity was shown in organic St. 1 ( $98.5 \%$ ) (Fig.49): Station wise, non-metric multidimensional scaling (MDS) ordination of organic carbon showed an overall similarity of $80 \%$ whereas highest similarity in total nitrogen variation was found between St. 3 and St. 4 (Fig.50). Season wise Bray-Curtis similarity profile for organic carbon showed four clusters (Fig.51). The similarity in organic carbon was highest in third cluster ( $98 \%$ ) represented by St. 1 in post monsoon 2009, St. 1 monsoon 2010, St. 3 post monsoon 2009 and St. 2 monsoon 2010. Cluster 4 showed a similarity of $98 \%$ represented by St. 3 in pre monsoon 2009, St. 4 pre monsoon 2009, St. 1 monsoon 2009, and St. 2 monsoon 2009. Followed by this Cluster 2 showed $97 \%$ similarity in seasonal distribution of organic carbon represented by St. 4 post monsoon 2009, St. 3 monsoon 2009, and St. 4 monsoon 2010. Seasonally non-metric multidimensional scaling (MDS) ordination showed that of organic carbon concentration were similar in all seasons with an overall similarity of $20 \%$ whereas it was highly similar at about 80\% (Fig.52).

Organic matter and energy content are reflective of organic carbon present in the system. During the study organic matter showed an average value of $1.613 \pm 0.52 \%$ in St .1 , $1.76 \pm 0.62 \%$ in St. $2,0.688 \pm 0.67 \%$ in St. 3 and $1.486 \pm 0.49 \%$ in St. 4 respectively. Seasonally wide variation in organic carbon was observed in the four stations (Fig.53).The ANOVA of soil organic matter showed a seasonal significance of $1 \%$ level ( $\mathrm{F}=0.871$ ) (Table 19). Season wise Duncan test, was grouped into 3 subsets with a significant level of $1 \%$. Energy content also varied from $17.36 \pm 13.19 \mathrm{j} / \mathrm{g}$ in St. $1,18.16 \pm 11.25 \mathrm{j} / \mathrm{g}$ in St. $2,19.77 \pm$ $12.78 \mathrm{j} / \mathrm{g}$ in St. 3 and $16.25 \pm 9.82 \mathrm{j} / \mathrm{g}$ in St. 4 .


Fig. 47 Monthly variation Soil organic carbon (\%) among four stations in selected wetlands in Padayati, Palakkad during 2009-2010


Fig. 48 Seasonal variation of Organic carbon (\%) in selected stations of Padayati wetland, Palakkad during 2009-2010


Fig. 49 Station wise Bray-Curtis similarity of soil Organic Carbon in selected wetlands of Padayatti, Palakkad during 2009-2010.


Fig. 50 Station wise Multi dimensional plot (MDS) of soil organic carbon in selected wetlands of Padayatti, Palakkad during 2009-2010.


Fig.51 Season wise Bray- Curtis similarity of soil Organic Carbon in selected wetlands of Padayatti, Palakkad during 2009-2010.


Fig. 52 Season wise Multi dimensional plot (MDS) of Soil Organic Carbon in selected wetlands of Padayatti, Palakkad during 2009-2010.


Fig . 53 Variations of organic matter $\%$ in selected stations of padayati wetland Palakkad.


Fig. 54 Distribution of energy content $(\mathrm{J} / \mathrm{g})$ in selected stations of Padayati

Table 18 ANOVA table of Organic Carbon in Padayati wetland, Palakkad during 2009-2010

## Organic Carbon

| Source | df | Mean Square | F |
| :--- | :---: | :---: | :---: |
| Corrected Model | 11 | .072 | 1.072 |
| Season | 2 | .059 | .871 |
| station | 3 | .114 | 1.689 |
| Season * station | 100 | .056 | .830 |
| Error | 112 | .067 |  |
| Total | 111 |  |  |
| Corrected Total | R Squared = $105^{* *}$*- significant at <br> *-significant at $5 \%$ level. |  |  |
|  |  |  |  |

Table 19 ANOVA table of Organic Matter in Padayati wetland, Palakkad during 2009-2010

Organic Matter

| Source | df | Mean Square | F |
| :--- | :---: | :---: | :---: |
| Intercept | 1 | 275.994 | 816.480 |
| Season | 2 | .294 | .871 |
| station | 3 | .571 | 1.689 |
| Season * station | 6 | .281 | .830 |
| Error | 112 | .338 |  |
| Total | 111 |  |  |
| Corrected Total |  |  |  |
| R Squared =.105**- significant at $1 \%$ level. |  |  |  |
| *- significant at $5 \%$ level. |  |  |  |

Table 20 ANOVA table of Energy content in Padayati wetland, Palakkad during 2009-2010

| Energy |  |  |  |
| :--- | :---: | :---: | :---: |
| Source | df | Mean Square | F |
| Corrected Model | 11 | 579.991 | 7.666 |
| Intercept | 1 | 38156.593 | 504.341 |
| Season | 2 | 2714.166 | 35.875 |
| station | 3 | 61.880 | .818 |
| Season * station | 6 | 116.196 | 1.536 |
| Error | 100 | 75.656 |  |
| Total | 112 |  |  |
| Corrected Total | 111 |  |  |
| R Squared $=.457{ }^{* *}$ - - significant at $1 \%$ level. |  |  |  |
|  |  |  |  |
| *- significant at $5 \%$ level. |  |  |  |

### 6.10 Methane Flux

Agricultural wetlands play an important role in the global flux of green house gases especially methane. Since agro ecosystems are usually intensively managed, agricultural practices may offer a way to curb agricultural emission, in turn partially mitigating the enhanced greenhouse effect. Agricultural soils can constitute either a net source or sink of greenhouse gases. The ways that these soils are managed can influence the flux of greenhouse gases by changing one or more of the following: the soil climate (i.e., temperature and water content), the physical/chemical environment of the soil, and the amount and chemical composition of organic residues applied to soil. Changes in these variables control the rate and extent of microbial processes, which in turn control the stabilization of C in soil and affect the production of greenhouse gases.

The preliminary analysis of the potential green house gas - methane flux from the organic and conventional fertilizer plots in padayatti were done on a monthly basis from july 2011 to November 2011. The analysis has showed that the emission rates of methane were higher in the organic stations as compared to fertilizer stations (Fig. 44). The gaseous methane efflux from soil is initially dependent on the rate of production of carbon dioxide (or $\mathrm{CH}_{4}$ ) within the soil-plant root system, and subsequently on the rate of gaseous diffusion and mass flow from soil pore waters to the atmosphere; a function of soil moisture and textural


Fig. 55 Methane emission flux from selected zones of Padayatti, Palakkad during 2010-2011

### 6.11 Microbial Biomass (Total Plate Count)

Soil micro organisms constitute a source and sink for nutrients and are involved in numerous activities, such as transformation of $\mathrm{C}, \mathrm{N}, \mathrm{P}$ and S , degradation of xenobiotic organic compounds, formation of soil physical structure and enhancement of plants' nutrient uptake (Gregorich et al.,1994; Seklemova et al., 2001). For these reasons, the importance of microorganisms in the maintenance of quality and productivity of agricultural soils is unquestionable. The responsiveness of microorganisms to environmental factors implies that disturbances imposed by agricultural treatments may lead to alterations in the composition and activity of soilmicrobiota and, therefore, may affect soil quality (Gregorich et al., 1994; Shibahara and Inubushi, 1997).

Soil microorganisms play a major role not only in decomposing organic matter, but also as a sink for plant nutrients. They represent a small fraction ( $1-3 \%$ ) of the total soil organic matter, it has relatively rapid turnover and it exerts an important influence on soil carbon and nutrient cycling, both through the oxidation of soil organic matter and a labile reservoir of nutrient elements such as carbon, nitrogen, phosphorus and sulfur (Anderson and
health which forms the living component of organic matter decomposing it into humus. A comparative analysis of heterotrophic bacterial counts in organic and fertilizer fields revealed that heterotrophic count was significantly low in fertilizer stations as compared to the organic stations.

During the present study, station wise analysis of microbial biomass showed an average value of $17.52 \times 10^{5}$ in St. $1,12.95 \times 10^{5}$ in St. $2,16.76 \times 10^{5}$ in St. 3 and $11.25 \times 10^{5}$ in St. 4 respectively. Variations in the heterotrophic counts of bacteria in different stations are given in Fig.56. In 2010 average highest value of $2413636 \mathrm{cfu} / \mathrm{g}$ soil was observed in St. 1 whereas colony forming units of 1602727 cfu'g soil was observed in fertilizer stations (Fig.13). Monthly observation of the data showed that microbial count varied from 50000 cfu/g in March 2010 to $5350000 \mathrm{cfu} / \mathrm{g}$ in St.1; that from $9700 \mathrm{cfu} / \mathrm{g}$ in February 2010 to $6310000 \mathrm{cfu} / \mathrm{g}$ in September 2010 in St.2; that from $12000 \mathrm{cfu} / \mathrm{g}$ in February 2010 to 7410000 in St. 3 and 0 in February 2010 to 2010000 in November 2010 in St. 4.


Months
Fig. 56 Monthly Variation heterotrophic bacterial count (cfugg) among four stations in selected wetlands in Padayetti, Palakkad during 2009-2010.

Determination of soil microbial biomass is generally used as a rapid indicator of change in soil management which in turn affects the turnover of organic matter (Nannipieri et al 1990). A relatively rapid response to organic amendments has been reported for microbial biomass carbon by several workers which suggest it could be a useful indicator in identifying

Committee, Axelsen and Elmholt ( 1998 ) reported that a transition to $100 \%$ organic farming in Denmark has increased the microbial biomass by $77 \%$, with rise the concentration of springtails by $37 \%$, that augment the density of earthworms by $154 \%$ as a national average. Conversion to organic farming therefore provides opportunities for significantly increase the biological activity of the soil.


Fig. 57 Seasonal variation of microbial biomass in selected stations of Padayati wetland, Palakkad during 2009-2010

From the ANOVA table it was evident that, the variation of microbial biomass were seasonally significant at $1 \%$ level $(\mathrm{F}=22.412)$ (Table 21 ). Seasonally biomass was high during Monsoon season in both 2009 and 2010 (Fig. 22). In season wise Duncan test showed that microbial biomass was grouped in to 2 subsets seasonally and all the subsets were significant at $1 \%$ level, indicating that the grouping was prominent as compared to the season where only 2 groups were observed.

Mean station wise dendrogram depicted highest similarity in Microbial biomass in St.I and St. 3 ( $98 \%$ ) whereas a least similarity was seen in organic st. 2 and SL. $4(97.5 \%$ ). Station wise non-metric multidimensional scaling (MDS) ordination of microbial biomass showed a similarity of $80 \%$. Season wise Bray-Curtis similarity profile for microbial biomass
showed four clusters (Fig.58). The similarity in microbial biomass was highest in first cluster $(99 \%)$ represented by St. 3 post monsoon 2009, St. 4 post monsoon 2009. Cluster 3 showed, $92 \%$ similarity in seasonal distribution of total nitrogen represented by St. 4 monsoon 2010 , St. 2 monsoon 2010 and St. 2 monsoon 2010 and St. 3 monsoon 2009. Followed by cluster 4 with a similarity of $91 \%$ represented by St 3 post monsoon 2009, St I monsoon 2010 and St. 3 monsoon 2009. Least similarity was fond in cluster 2 having a similarity of $90 \%$ represented by St. 1 monsoon 2009. St. 2 post monsoon 2009, st. 4 monsoon 2009, St. 1 post monsoon 2009 and St. 3 monsoon 2009, St. 2 monsoon 2009, St. 4 monsoon 2009 and St. 4 post monsoon 2009. Seasonally non-metric multidimensional scaling (MDS) ordination showed that microbial biomass was generally similar in all seasons except St. 2 during post monsoon 2009 with a similarity of $20 \%$.



Fig. 58 Station wise Bray- Curtis similarity of microbial biomass in selected wetlands of Padayatti, Palakkad during 2009-2010.


Fig. 59 Station wise Multi dimensional plot (MDS) of Soil Organic Carbon in selected wetlands of Padayatti, Palakkad during 2009-2010.

Complete linkage


Fig. 60 Season wise Bray-Curtis similarity of soil Organic Carbon in selected wetlands of Padayatti, Palakkad dring 2009-2010.


Fig. 61 Multi dimensional plot (MDS) of Soil Organic Carbon in selected wetlands of Padayatti, Palakkad during 2009-2010

Table 21 ANOVA table of Microbial Biomass in Padayati wetland, Palakkad during 2009-2010

| Source | df | Mean Square | F |
| :--- | :---: | :---: | :---: |
| Corrected Model | 11 | 9.051 | $4.501^{* *}$ |
| Season | 2 | 4.507 | $22.412^{* *}$ |
| station | 3 | 1.409 | .700 |
| Season * station | 100 | 9.988 | .497 |
| Error | 112 | 2.011 |  |
| Total | 111 |  |  |
| Corrected Total |  |  |  |
| R Squared $=.331$ ** significant at $1 \%$ level. |  |  |  |
| * significant at $5 \%$ level. |  |  |  |

Table. 22 Post Hoc table of Total Microbial Biomass in Padayatti wetland, Palakkad 2009-2010.

| Microbial Biomass |  |  |  |
| :--- | :---: | :---: | :---: |
|  | station | N | Subset |
|  |  |  | 1 |
| Duncan $^{2}$ | 4 | 28 | 847357.1429 |
|  | 2 | 28 | 940871.4286 |
|  | 1 | 28 | 1.2065 E 6 |
|  | 3 | 28 | 1.2643 E 6 |
| Sig. |  | .323 |  |

### 6.12 BIOTA

## Macrobenthos

A wide variation in the distribution of macrofauna was noted during the present study period. The distribution of macro fauna depends mainly on the hydrological pattern and the agricultural practices of the paddy wetland. Macrobenthic community in the study area was constituted mainly by two groups oligochactea and crustaceans. Station wise analysis revealed that macro benthic communities showed highest abundance during the month of August 2009. September, December and February 2010 in St. 1 with an average value of $758.33 \mathrm{no} / \mathrm{m}^{2}$.

In St. 2 maximum abundance of organisms were observed during the moths October 2009, November, December, January and February 2010 with an average number of 834 organisms $/ \mathrm{m}^{2}$. Station 3 showed an average of 671.875 no of organism $/ \mathrm{m}^{2}$. Station4 amended by chemical fertilizers showed the lowest number of organisms.


Fig. 62 Abundance of macrobenthic organisms $\left(\mathrm{no} / \mathrm{m}^{2}\right)$ in selected stations of Padayetti wetland during 2009-2010


Fig. 63 Percentage abundance of oligochaetea $\left(\mathrm{no} / \mathrm{m}^{2}\right)$ in selected wetlands of Padayatti wetland Palakkad during 2009-2010.


Fig. 64 Percentage abundance of crustaceans ( $\mathrm{no} / \mathrm{m}^{2}$ ) in selected wetlands of Padayatti wetland Palakkad during 2009-2010.

The survival and existence of macro benthic community in the study area mainly depends on the seasonal hydrological pattern and agricultural practices. During the present study the distribution and abundance of benthic organisms were low during the pre monsoon. An average of 136.15 no.m ${ }^{-2}$ was observed in St.1, 109.49 in St.2, 88.157 in St. 3 and 97.05 in St. 4 respectively.


Fig. 65 Sesonal distribution of Macro benthic community in selected wetalnds of

Marobenthos has showed an intimate relation with the climatic and cropping pattern of the study site. Continuous tilling and weeding practices may be a reason for low benthic organisms. Organisms were almost nil in months with elevated temperatures. The station with fertilizer application zones showed lesser abundance of organisms than that of organic zones. Macro benthic communities in the study area were mainly constituted by crustaceans and annelids. Earth worms dominated among the observed during the study period. The number of organisms in soil is influenced by numerous factors, including soil type, type of fertiliser, crop rotation, cultivation, climate, etc. It is therefore difficult to separate the effects of organic farming from other factors.

## 7. Salient Observations

The salient observations during the present study from February 2009 to February 2011 indicate that soil in Padayetti under organic cultivation was able to maintain marginally increased concentration of total soil organic matter, total and available nitrogen, potassium, calcium and available phosphorous and pH as compared to the conventional fertilizer systems. The average total nitrogen concentration was $0.477 \%$ in organic and $0.492 \%$ in fertilizer zones. The available nitrogen values showed an elevated concentration of an average $117.09 \%$ in organic amended field that of $107.31 \%$ in fertilizer zones, Sodium concentration varied marginally between organic amended ( $0.485 \mathrm{mg} / \mathrm{g}$ ) and fertilizer fields $(0.395 \mathrm{mg} / \mathrm{g})$. The essential nutrient potassium showed higher concentration of $0.856 \mathrm{mg} / \mathrm{g}$ in organic stations whereas it was $0.492 \mathrm{mg} / \mathrm{g}$ in conventional fertilizer zones. Calcium concentration varied between 2.814 in organic and $2.22 \mathrm{mg} / \mathrm{g}$ in fertilizer fields. The percentage composition of organic carbon in the soil also showed an increase in the organic amended fields with $0.17 \%$ to that of $0.592 \%$ in fertilizer fields. The organic matter and energy content of Padayatti wetland followed a same trend as that of organic carbon.

The benthic community also showed an increased abundance in organic amended stations with an average of $844 \mathrm{no} / \mathrm{m}^{2}$ in organic stations and $313 \mathrm{no} / \mathrm{m}^{2}$ in conventional fertilizer stations. The increase in benthic organisms cannot be correlated alone with organic farming because numerous other environmental factors also play a crucial role in their abundance and diversity. The mean heterotrophic bacterial count also showed an increased colony forming unit in organic stations ( $679698 \mathrm{cfu} / \mathrm{g}$ ) as compared fertilizer stations ( $160272 \mathrm{cfu} / \mathrm{g}$ ).

Long term studies from Califormia and England in organic and conventionally managed farming systems have represented higher soil organic matter and total nitrogen with the use of organic practices (Sean Clark et al 1998; Lockeretz et al., 1981; Alvarez et al., 1993: Reganold, 1988; Reganold et al, 1993; Drinkwater et al., 1995). Soil organic carbon and total nitrogen in the present study also showed that they were greater in soil amended with organic manure, as compared with chemical fertilizers. An enhanced soil organic carbon and total nitrogen in organic fields are due to high loading of organic carbon and nitrogen and efficient metabolic activity of microorganisms and physio chemical protection of organic C and N . Studies comparing soil organically and conventionally managed farming systems have documented higher soil organic matter (OM) and total nitrogen with the use of organic practices (Lockeretz et al., 1981; Alvarez et al., 1988, 1993; Reganold, 1988; Reganold et al; 1993; Drinkwater et al,. 1995). Increase in soil OM following the transition to organic management occur slowly, generally taking years to detect (Wander et al., 1994; Werner, 1997), yet can have a dramatic effect on long term productivity (Tiessen et al; 1994). Increase in soil organic matter following the transition to organic management occur slowly taking several years, 1997) to detect (Wander et al., 1994; Drinkwater et al., 1995).Soil organic matter (SOM) and organic carbon contains most of the soil reserve of nitrogen (Berry et al. 2002) and large proportions of other nutrients such as phosphorus ( P ) etc (Stevenson 1986). Increased levels of soil organic matter, and hence increased organic reserves of nutrients, are widely reported for organic systems (Stockdale et al. 2001).

In the present study, even though considerable variation could be observed in the organic and fertilizer fields in the context of soil chemical and biological parameters, however they were not very much pronounced. It may take considerable time for the organic elements mainly the microflora to become effective for regulating the quality of the soil. So this time delay could also be a factor for the low variability of different parameters in certain months of the study in different stations. Therefore, it is expected that, more pronounced variability of different parameters in the study area would be evolved in the subsequent periods of the investigation.

Therefore, long term sampling and analysis are to be continued in the wetland to arrive at more definite conclusions.

## 8. References

1. APHA 2005, American Public Health Association Standard Methods for the examination of analysis of water and waste-water 21st edition.
2. Alfred E Brown. (2001) Benson's Microbiological Application, Laboratory Manual in General Microbiology 8th edition. Tata McGraw-Hill Companies.
3. Anderson, J.P.E and Domsch, K.H. (1980) Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci. 130:211-216.
4. Bames H, (1959) Apparatus and Methods in Oceanography: Part I Chemical,(George Allen \& Umwin, London).
5. Berry PM Sylvester-Bradley R Philipps L. Hatch DJ Cuttle SP Rayns FW \& Gosling P. (2002). Is the productivity of organic farms restricted by the supply of available nitrogen. Soil Use and Management $18,248+255$.
6. Clark, M.S., Horwath, W.R., Shennan, C., Scow, K.M. (1998) Changes in soil chemical properties resulting from organic and low-input farming practices. Agron. J. 90, 662-671.
7. Crawford, J.J., S.J. Train and O.H. Tuovinen. (2000) Bacterial degradation of artazine in redox potential gradients in fixed-film sand columns. Soil. Sci. Soc. Am. J., 64: 624-634,
8. Drinkwater, L.E., Wagoner, P., Sarrantonio, M. (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396, 262-264.
9. Dimitrov, D. (1997). Acta Hort., 462: 433-37.
10. Eswaran, H., Berg. E.V.D., Reich, P. (1993) Organic carbon in soil of the world. Soil Sci.Soc. Am. J. 57, 192-194.
11. Fauvel P. (1953) The Fauna of India including Pakistan, Ceylon, Burma and Malaya Annelida Polychaeta, The India Press Ltd.
12. FAO 2002. Increasing incomes and food security of small farmers in West and Central Africa through exports of organic and fair-trade tropical products. Mango, Pineapple, Cocoa. Trade and Markets Division of the Food and Agriculture Organisation of the United Nations. GCP/RAF/404/GER. Rome.
13. Gray, L.C., Morant, P. (2003) Reconciling indigenous knowledge with scientific assessment of soil fertility changes in southwestern Burkina Faso. Geoderma 111 , 425-437.
14. Gregorich, E.G., Carter, M.R., Angers, D.A., Monreall, C.M., Ellerta, B.H.(1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science 74, 367e385.
15. Holme N. A and Mc Intyre A. D. (2003) Methods for study of Marine Benthos, IBP Hand book No.6, Blackwell Scientific Publications.
16. Jackson M. L. (1973) Soil Chemical Analysis Printice-hall of India Private Limited, New Delhi. El-Wakeel \& Riley J P, 183, J Cons Perm Inst explor. Mer., 22 (1957).
17. Jenkinson, D.S., Rayner, J.H. (1977) The tumover of soil organic matter in some of Rothamsted classical experiments. Soil Sci. 125, 298-305.
18. Knorr, W., Prentice, I.C. House, J1., Holland, E.A. (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298-301.
19. L.R. Bulluck, M. Brosius, G.K. Evanylo, J.B. Ristaino (2002). Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology 19 147-160
20. M. Sean Clark, William R. Horwath, Carol Shennan, and Kate M. Scow. (1998) Changes in Soil Chemical Propertes Resulting from Organic and Low-Input Farming Practices. Agronomy journal, vol 90
21. Pathak. S.C. (1992). Hort. Sci. $27.738-41$
22. Prasad, B., Prasad, J. \& Prasad. B. (1995) Natrient management for sustainable ricewheat production in calcareous seil amended ath green manures and zinc. Fertilizer News, 40 (3), 39-45.
23. P. Gosling and M. Shepherd. (2004) Lang-tere changes in soil fertility in organic arable farming systems in England, with proticuler reference to phosphorus and potassium, Agriculture, Ecosystems and Envmener 105 (2005) 425-432.
24. Tisdale, S.L., W.L. Nelson, JD. Beanse and IL. Harlien (1993) Soil fertility and fertilizers. $5^{\text {th }}$ ed. Macmillan Publ Co_ Nen Yerk.
25. Post,W.M., Emanuel, W.R., Zinke, P.J. (1982) Soil carbon pools and life zones. Nature 298, 156-159.
26. Nannipieri, P. (Eds.), Alef, K. (1995) Soil respiration. In: Alef, K., Methods in Applied Soil Microbiology and Biochemistry. Academic Press, San Diego, CA, USA, pp. 214-219.
27. McGrath, D., Zhang, C.S. ( 2003) Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Appl. Geochem. 18, 1629-1639.
28. Nannipieri, P., Greco, S., Ceccanti, B. (1990) Ecological significance of the biological activity in soil. In: Bollag, J.M., Stotzky, G. (Eds.), Soil Biochemistry, voL. 6. Marcel Dekker, New York, pp. 293-355.
29. Rajagopal, D. and Sreeramulu, KR. (1999) Indian Fmg., 49(2): 7-10
30. Reganold, J.P. Elliott, L.F. Unger, Y.L. (1987) Long-term effects of organic and conventional farming on soil crosion. Nature 330, 370-372.
31. Reeves, D.W. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 43, 131-167.
32. Shibahara, F., Inubushi, K. (1997) Effects of organic matter application on microbial biomass and available nutrients in various types of paddy soils. Soil Science and Plant Nutrition 43, 19le203.
33. Susanne, A., Michelle, M.W, (1998) Long-term trends of corn yield and soil organic matter in different crop sequences and soil fertility treatments on the Morrow Plot. Adv. Agron. 62, 153-197.
34. Stevenson FJ. (1986) Cycles of Soil Carbon, Nitrogen, Phosphorus, Sulfur, micronutrients, Jokm Wiley and Sons Inc New York.
35. Tan, Z.X., Lal, R. (2005) Carboe sequestration potential estimates with changes in land use and tillage practice in Ohio. USA. Agr. Ecosyst. Environ. 111, 140-152.

- Scientific publications prodaced during the project period 2009-2010

Akhilesh vijay and Bigoy Nandm (2010) Preliminary observations on soil and biological parameters in relation to organic farming practices in the kole wetlands of Palakkad. Kerala, Proceedings- National conference on challenges of modern biology

